Recherche avancée

Médias (1)

Mot : - Tags -/belgique

Autres articles (11)

  • Des sites réalisés avec MediaSPIP

    2 mai 2011, par

    Cette page présente quelques-uns des sites fonctionnant sous MediaSPIP.
    Vous pouvez bien entendu ajouter le votre grâce au formulaire en bas de page.

  • Sélection de projets utilisant MediaSPIP

    29 avril 2011, par

    Les exemples cités ci-dessous sont des éléments représentatifs d’usages spécifiques de MediaSPIP pour certains projets.
    Vous pensez avoir un site "remarquable" réalisé avec MediaSPIP ? Faites le nous savoir ici.
    Ferme MediaSPIP @ Infini
    L’Association Infini développe des activités d’accueil, de point d’accès internet, de formation, de conduite de projets innovants dans le domaine des Technologies de l’Information et de la Communication, et l’hébergement de sites. Elle joue en la matière un rôle unique (...)

  • XMP PHP

    13 mai 2011, par

    Dixit Wikipedia, XMP signifie :
    Extensible Metadata Platform ou XMP est un format de métadonnées basé sur XML utilisé dans les applications PDF, de photographie et de graphisme. Il a été lancé par Adobe Systems en avril 2001 en étant intégré à la version 5.0 d’Adobe Acrobat.
    Étant basé sur XML, il gère un ensemble de tags dynamiques pour l’utilisation dans le cadre du Web sémantique.
    XMP permet d’enregistrer sous forme d’un document XML des informations relatives à un fichier : titre, auteur, historique (...)

Sur d’autres sites (3920)

  • Exception thrown at 0x00007FFC0B57BCEF (swscale-6.dll) in App.exe : 0xC0000005 : Access violation reading location 0xFFFFFFFFFFFFFFFF

    9 novembre 2023, par JIUN-YU

    Trying to play a video using FFmpeg on visual studio 2022 on windows 10.
Exception is thrown at sws_scale in the code. Don't know why this is occurred.
It is worth noting that this error sometimes occurs when reading the camera and sometimes it does not.

    


    here is my code

    


    bool CalibrationPanel::video_reader_read_frame(VReaderState* state, cv::Mat cvimg)
{
    // Unpack members of state
    auto& width = state->width;
    auto& height = state->height;
    auto& av_format_ctx = state->av_format_ctx;
    auto& av_codec_ctx = state->av_codec_ctx;
    auto& video_stream_index = state->video_stream_index;
    auto& av_frame = state->av_frame;
    auto& av_packet = state->av_packet;
    auto& sws_scaler_ctx = state->sws_scaler_ctx;


    // Decode one frame
    int response;
    while (av_read_frame(av_format_ctx, av_packet) >= 0)
    {
        if (av_packet->stream_index != video_stream_index)
        {
            av_packet_unref(av_packet);
            continue;
        }

        response = avcodec_send_packet(av_codec_ctx, av_packet);
        if (response < 0)
        {
            char errStr[256] = {0};
            av_strerror(response, errStr, sizeof(errStr));
            printf("Failed to decode packet: %s\n", errStr);
            return false;
        }

        response = avcodec_receive_frame(av_codec_ctx, av_frame);
        if (response == AVERROR(EAGAIN) || response == AVERROR_EOF)
        {
            av_packet_unref(av_packet);
            continue;
        }
        else if (response < 0)
        {
            char errStr[256] = {0};
            av_strerror(response, errStr, sizeof(errStr));
            printf("Failed to decode packet: %s\n", errStr);
            return false;
        }

        av_packet_unref(av_packet);
        break;
    }
    int64_t* pts = &ppts;
    *pts = av_frame->pts;

    // Set up sws scaler
    if (!sws_scaler_ctx)
    {
        sws_scaler_ctx = sws_getContext(width, height, av_codec_ctx->pix_fmt,
                                        width, height, AV_PIX_FMT_BGR24,
                                        SWS_BILINEAR, NULL, NULL, NULL);
        if (!sws_scaler_ctx)
        {
            printf("Couldn't initialize sw scaler\n");
            return false;
        }
    }


    // Creating an image space to hold YUV images
    AVFrame* frameYUV = av_frame_alloc();
    auto* out_buffer = (unsigned char*)av_malloc(av_image_get_buffer_size(AV_PIX_FMT_BGR24, width, height, 1));
    av_image_fill_arrays(frameYUV->data, frameYUV->linesize, (const uint8_t*)out_buffer, AV_PIX_FMT_BGR24, width, height, 1);

    uint8_t* dest[4] = {cvimg.data, NULL, NULL, NULL};
    sws_scale(sws_scaler_ctx, av_frame->data, av_frame->linesize, 0, av_frame->height, dest, frameYUV->linesize);

    return true;
}


    


    fixed this bug, so it's not luck that makes the camera turn on every time.

    


  • ARM inline asm secrets

    6 juillet 2010, par Mans — ARM, Compilers

    Although I generally recommend against using GCC inline assembly, preferring instead pure assembly code in separate files, there are occasions where inline is the appropriate solution. Should one, at a time like this, turn to the GCC documentation for guidance, one must be prepared for a degree of disappointment. As it happens, much of the inline asm syntax is left entirely undocumented. This article attempts to fill in some of the blanks for the ARM target.

    Constraints

    Each operand of an inline asm block is described by a constraint string encoding the valid representations of the operand in the generated assembly. For example the “r” code denotes a general-purpose register. In addition to the standard constraints, ARM allows a number of special codes, only some of which are documented. The full list, including a brief description, is available in the constraints.md file in the GCC source tree. The following table is an extract from this file consisting of the codes which are meaningful in an inline asm block (a few are only useful in the machine description itself).

    f Legacy FPA registers f0-f7.
    t The VFP registers s0-s31.
    v The Cirrus Maverick co-processor registers.
    w The VFP registers d0-d15, or d0-d31 for VFPv3.
    x The VFP registers d0-d7.
    y The Intel iWMMX co-processor registers.
    z The Intel iWMMX GR registers.
    l In Thumb state the core registers r0-r7.
    h In Thumb state the core registers r8-r15.
    j A constant suitable for a MOVW instruction. (ARM/Thumb-2)
    b Thumb only. The union of the low registers and the stack register.
    I In ARM/Thumb-2 state a constant that can be used as an immediate value in a Data Processing instruction. In Thumb-1 state a constant in the range 0 to 255.
    J In ARM/Thumb-2 state a constant in the range -4095 to 4095. In Thumb-1 state a constant in the range -255 to -1.
    K In ARM/Thumb-2 state a constant that satisfies the I constraint if inverted. In Thumb-1 state a constant that satisfies the I constraint multiplied by any power of 2.
    L In ARM/Thumb-2 state a constant that satisfies the I constraint if negated. In Thumb-1 state a constant in the range -7 to 7.
    M In Thumb-1 state a constant that is a multiple of 4 in the range 0 to 1020.
    N Thumb-1 state a constant in the range 0 to 31.
    O In Thumb-1 state a constant that is a multiple of 4 in the range -508 to 508.
    Pa In Thumb-1 state a constant in the range -510 to +510
    Pb In Thumb-1 state a constant in the range -262 to +262
    Ps In Thumb-2 state a constant in the range -255 to +255
    Pt In Thumb-2 state a constant in the range -7 to +7
    G In ARM/Thumb-2 state a valid FPA immediate constant.
    H In ARM/Thumb-2 state a valid FPA immediate constant when negated.
    Da In ARM/Thumb-2 state a const_int, const_double or const_vector that can be generated with two Data Processing insns.
    Db In ARM/Thumb-2 state a const_int, const_double or const_vector that can be generated with three Data Processing insns.
    Dc In ARM/Thumb-2 state a const_int, const_double or const_vector that can be generated with four Data Processing insns. This pattern is disabled if optimizing for space or when we have load-delay slots to fill.
    Dn In ARM/Thumb-2 state a const_vector which can be loaded with a Neon vmov immediate instruction.
    Dl In ARM/Thumb-2 state a const_vector which can be used with a Neon vorr or vbic instruction.
    DL In ARM/Thumb-2 state a const_vector which can be used with a Neon vorn or vand instruction.
    Dv In ARM/Thumb-2 state a const_double which can be used with a VFP fconsts instruction.
    Dy In ARM/Thumb-2 state a const_double which can be used with a VFP fconstd instruction.
    Ut In ARM/Thumb-2 state an address valid for loading/storing opaque structure types wider than TImode.
    Uv In ARM/Thumb-2 state a valid VFP load/store address.
    Uy In ARM/Thumb-2 state a valid iWMMX load/store address.
    Un In ARM/Thumb-2 state a valid address for Neon doubleword vector load/store instructions.
    Um In ARM/Thumb-2 state a valid address for Neon element and structure load/store instructions.
    Us In ARM/Thumb-2 state a valid address for non-offset loads/stores of quad-word values in four ARM registers.
    Uq In ARM state an address valid in ldrsb instructions.
    Q In ARM/Thumb-2 state an address that is a single base register.

    Operand codes

    Within the text of an inline asm block, operands are referenced as %0, %1 etc. Register operands are printed as rN, memory operands as [rN, #offset], and so forth. In some situations, for example with operands occupying multiple registers, more detailed control of the output may be required, and once again, an undocumented feature comes to our rescue.

    Special code letters inserted between the % and the operand number alter the output from the default for each type of operand. The table below lists the more useful ones.

    c An integer or symbol address without a preceding # sign
    B Bitwise inverse of integer or symbol without a preceding #
    L The low 16 bits of an immediate constant
    m The base register of a memory operand
    M A register range suitable for LDM/STM
    H The highest-numbered register of a pair
    Q The least significant register of a pair
    R The most significant register of a pair
    P A double-precision VFP register
    p The high single-precision register of a VFP double-precision register
    q A NEON quad register
    e The low doubleword register of a NEON quad register
    f The high doubleword register of a NEON quad register
    h A range of VFP/NEON registers suitable for VLD1/VST1
    A A memory operand for a VLD1/VST1 instruction
    y S register as indexed D register, e.g. s5 becomes d2[1]
  • react native ffmpeg haw write to external storage

    18 juin 2023, par rayen saidani

    iam trying to take a part from an audio file and create another file with it but i keep getting permissions denied or Read-only file system error :

    


    function:export const handleVideoLoad = (selectedVideo: any) => {
 
 FFmpegKit.execute(
   `-ss 00:00:00 -i ${selectedVideo.url.split(" ").join("")} -t 00:20:00 -map 0 -c copy ${
     'ardsh.mp3'
   }`,
 ).then(async session => {
   const state = FFmpegKitConfig.sessionStateToString(
     await session.getState(),
   );
   const returnCode = await session.getReturnCode();
   const failStackTrace = await session.getFailStackTrace();
   const duration = await session.getDuration();

   if (ReturnCode.isSuccess(returnCode)) {
     console.log(`Encode completed successfully in ${duration} milliseconds;`);
   } else if (ReturnCode.isCancel(returnCode)) {
     console.log('Encode canceled');
   } else {
     console.log(
       `Encode failed with state ${state} and rc ${returnCode}.${
         (failStackTrace, '\\n')
       }`,
     );
   }
 });
};


    


    i already have the permissions in Manifest file and i have the android:requestLegacyExternalStorage="true"

    


    error :

    


    
 Audio: pcm_s16le ([1][0][0][0] / 0x0001), 24000 Hz, mono, s16, 384 kb/s
 LOG
 LOG  ardsh.mp3: Read-only file system
 LOG  Encode failed with state COMPLETED and rc 1.\n