
Recherche avancée
Médias (2)
-
Granite de l’Aber Ildut
9 septembre 2011, par
Mis à jour : Septembre 2011
Langue : français
Type : Texte
-
Géodiversité
9 septembre 2011, par ,
Mis à jour : Août 2018
Langue : français
Type : Texte
Autres articles (68)
-
La file d’attente de SPIPmotion
28 novembre 2010, parUne file d’attente stockée dans la base de donnée
Lors de son installation, SPIPmotion crée une nouvelle table dans la base de donnée intitulée spip_spipmotion_attentes.
Cette nouvelle table est constituée des champs suivants : id_spipmotion_attente, l’identifiant numérique unique de la tâche à traiter ; id_document, l’identifiant numérique du document original à encoder ; id_objet l’identifiant unique de l’objet auquel le document encodé devra être attaché automatiquement ; objet, le type d’objet auquel (...) -
Problèmes fréquents
10 mars 2010, parPHP et safe_mode activé
Une des principales sources de problèmes relève de la configuration de PHP et notamment de l’activation du safe_mode
La solution consiterait à soit désactiver le safe_mode soit placer le script dans un répertoire accessible par apache pour le site -
Mediabox : ouvrir les images dans l’espace maximal pour l’utilisateur
8 février 2011, parLa visualisation des images est restreinte par la largeur accordée par le design du site (dépendant du thème utilisé). Elles sont donc visibles sous un format réduit. Afin de profiter de l’ensemble de la place disponible sur l’écran de l’utilisateur, il est possible d’ajouter une fonctionnalité d’affichage de l’image dans une boite multimedia apparaissant au dessus du reste du contenu.
Pour ce faire il est nécessaire d’installer le plugin "Mediabox".
Configuration de la boite multimédia
Dès (...)
Sur d’autres sites (6056)
-
I want to print HLS files using ffmpeg in aws lambda (python)
14 avril 2021, par 최우선I implemented it through the link(https://aws.amazon.com/ko/blogs/media/processing-user-generated-content-using-aws-lambda-and-ffmpeg/) here, and it works well.


s3_source_bucket = event['Records'][0]['s3']['bucket']['name']
s3_source_key = event['Records'][0]['s3']['object']['key']

s3_source_basename = os.path.splitext(os.path.basename(s3_source_key))[0]
s3_destination_filename = s3_source_basename + ".m3u8"

s3_client = boto3.client('s3')
s3_source_signed_url = s3_client.generate_presigned_url('get_object',
 Params={'Bucket': s3_source_bucket, 'Key': s3_source_key},
 ExpiresIn=SIGNED_URL_TIMEOUT)


ffmpeg_cmd = "/opt/bin/ffmpeg -i \"" + s3_source_signed_url + "\" -codec: copy -start_number 0 -hls_time 10 -hls_list_size 0 -f hls -"
command1 = shlex.split(ffmpeg_cmd)
p1 = subprocess.run(command1, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

resp = s3_client.put_object(Body=p1.stdout, Bucket=S3_DESTINATION_BUCKET, Key=s3_destination_filename)



However, the actual output through ffmpeg is multiple files. For example test.m3u8, test0.ts, test1.ts .....


But when I print p1.stdout, it looks like multiple files (test.m3u8,test0.ts....) are merged into one file.


Is there a way to get the actual output multiple files (test.m3u8,test0.ts......) from p1.stdout ? Please help.


-
Using ffmpeg to assemble images from S3 into a video
10 juillet 2020, par Mass Dot NetI can easily assemble images from local disk into a video using ffmpeg and passing a
%06d
filespec. Here's what a typical (pseudocode) command would look like :

ffmpeg.exe -hide_banner -y -r 60 -t 12 -i /JpgsToCombine/%06d.JPG <..etc..>



However, I'm struggling to do the same with images stored in AWS S3, without using some third party software to mount a virtual drive (e.g. TNTDrive). The S3 folder containing our images is too large to download to the 20GB ephemeral storage provided for AWS containers, and we're trying to avoid EFS because we'd have to provision expensive bandwidth.


Here's what the HTTP and S3 URLs to each of our JPGs looks like :


# HTTP URL
https://massdotnet.s3.amazonaws.com/jpgs-to-combine/000000.JPG # frame 0
https://massdotnet.s3.amazonaws.com/jpgs-to-combine/000012.JPG # frame 12
https://massdotnet.s3.amazonaws.com/jpgs-to-combine/000123.JPG # frame 123
https://massdotnet.s3.amazonaws.com/jpgs-to-combine/456789.JPG # frame 456789

# S3 URL
s3://massdotnet/jpgs-to-combine/000000.JPG # frame 0
s3://massdotnet/jpgs-to-combine/000012.JPG # frame 12
s3://massdotnet/jpgs-to-combine/000123.JPG # frame 123
s3://massdotnet/jpgs-to-combine/456789.JPG # frame 456789



Is there any way to get ffmpeg to assemble these ? We could generate a signed URL for each S3 file, and put several thousand of those URLs onto a command line with an FFMPEG concat filter. However, we'd run up into the command line input limit in Linux at some point using this approach. I'm hoping there's a better way...


-
AWS Lambda : "Unzipped size must be smaller than 106534017 bytes" after adding single file
17 septembre 2023, par leonWhen trying to deploy my lambdas using AWS through the serverless framework I had no problems until I tried adding the ffmpeg binary.


Now the ffmpeg binaries I have tried to add have ranged from 26 mb to 50 mb. Whichever I add, I get the following error :


UPDATE_FAILED: WhatsappDocumentHandlerLambdaFunction (AWS::Lambda::Function)
Resource handler returned message: "Unzipped size must be smaller than 106534017 bytes (Service: Lambda, Status Code: 400, Request ID: ...)" (RequestToken: ..., HandlerErrorCode: InvalidRequest)



The problem is that I did not add the file to this function. I added it to a completely different one.


I have tried the following things :


- 

- Creating an "empty" function that only contains the ffmpeg binary and a function handler
- Creating a layer that only contains the ffmpeg binary
- Deleting the ffmpeg binary (the error goes away and deployment succeeds
- Varying sizes of ffmpeg binaries between 26 and 50mb
- Getting the ffmpeg-lambda-layer (https://github.com/serverlesspub/ffmpeg-aws-lambda-layer ; https://serverlessrepo.aws.amazon.com/applications/us-east-1/145266761615/ffmpeg-lambda-layer) and deploying it myself












When trying every single one of these options I get the UPDATE_FAILED error in a different function that surely is not too big.


I know I can deploy using a docker image but why complicate things with docker images when it should work ?


I am very thankful for any ideas.