
Recherche avancée
Médias (1)
-
Revolution of Open-source and film making towards open film making
6 octobre 2011, par
Mis à jour : Juillet 2013
Langue : English
Type : Texte
Autres articles (33)
-
Personnaliser en ajoutant son logo, sa bannière ou son image de fond
5 septembre 2013, parCertains thèmes prennent en compte trois éléments de personnalisation : l’ajout d’un logo ; l’ajout d’une bannière l’ajout d’une image de fond ;
-
Les formats acceptés
28 janvier 2010, parLes commandes suivantes permettent d’avoir des informations sur les formats et codecs gérés par l’installation local de ffmpeg :
ffmpeg -codecs ffmpeg -formats
Les format videos acceptés en entrée
Cette liste est non exhaustive, elle met en exergue les principaux formats utilisés : h264 : H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 m4v : raw MPEG-4 video format flv : Flash Video (FLV) / Sorenson Spark / Sorenson H.263 Theora wmv :
Les formats vidéos de sortie possibles
Dans un premier temps on (...) -
De l’upload à la vidéo finale [version standalone]
31 janvier 2010, parLe chemin d’un document audio ou vidéo dans SPIPMotion est divisé en trois étapes distinctes.
Upload et récupération d’informations de la vidéo source
Dans un premier temps, il est nécessaire de créer un article SPIP et de lui joindre le document vidéo "source".
Au moment où ce document est joint à l’article, deux actions supplémentaires au comportement normal sont exécutées : La récupération des informations techniques des flux audio et video du fichier ; La génération d’une vignette : extraction d’une (...)
Sur d’autres sites (4223)
-
avcodec/texturedsp : add TextureDSPThreadContext for common decode/encode function
19 mars 2022, par Marton Balintavcodec/texturedsp : add TextureDSPThreadContext for common decode/encode function
This will allow using a common threaded decode or encode function from most
codecs using texture DSP functions.Signed-off-by : Marton Balint <cus@passwd.hu>
-
Beware the builtins
14 janvier 2010, par Mans — CompilersGCC includes a large number of builtin functions allegedly providing optimised code for common operations not easily expressed directly in C. Rather than taking such claims at face value (this is GCC after all), I decided to conduct a small investigation to see how well a few of these functions are actually implemented for various targets.
For my test, I selected the following functions :
__builtin_bswap32
: Byte-swap a 32-bit word.__builtin_bswap64
: Byte-swap a 64-bit word.__builtin_clz
: Count leading zeros in a word.__builtin_ctz
: Count trailing zeros in a word.__builtin_prefetch
: Prefetch data into cache.
To test the quality of these builtins, I wrapped each in a normal function, then compiled the code for these targets :
- ARMv7
- AVR32
- MIPS
- MIPS64
- PowerPC
- PowerPC64
- x86
- x86_64
In all cases I used compiler flags were
-O3 -fomit-frame-pointer
plus any flags required to select a modern CPU model.
ARM
Both
__builtin_clz
and__builtin_prefetch
generate the expectedCLZ
andPLD
instructions respectively. The code for__builtin_ctz
is reasonable for ARMv6 and earlier :rsb r3, r0, #0 and r0, r3, r0 clz r0, r0 rsb r0, r0, #31
For ARMv7 (in fact v6T2), however, using the new bit-reversal instruction would have been better :
rbit r0, r0 clz r0, r0
I suspect this is simply a matter of the function not yet having been updated for ARMv7, which is perhaps even excusable given the relatively rare use cases for it.
The byte-reversal functions are where it gets shocking. Rather than use the
REV
instruction found from ARMv6 on, both of them generate external calls to__bswapsi2
and__bswapdi2
in libgcc, which is plain C code :SItype __bswapsi2 (SItype u) return ((((u) & 0xff000000) >> 24) | (((u) & 0x00ff0000) >> 8) | (((u) & 0x0000ff00) << 8) | (((u) & 0x000000ff) << 24)) ;
DItype
__bswapdi2 (DItype u)
return ((((u) & 0xff00000000000000ull) >> 56)
| (((u) & 0x00ff000000000000ull) >> 40)
| (((u) & 0x0000ff0000000000ull) >> 24)
| (((u) & 0x000000ff00000000ull) >> 8)
| (((u) & 0x00000000ff000000ull) << 8)
| (((u) & 0x0000000000ff0000ull) << 24)
| (((u) & 0x000000000000ff00ull) << 40)
| (((u) & 0x00000000000000ffull) << 56)) ;
While the 32-bit version compiles to a reasonable-looking shift/mask/or job, the 64-bit one is a real WTF. Brace yourselves :
push r4, r5, r6, r7, r8, r9, sl, fp mov r5, #0 mov r6, #65280 ; 0xff00 sub sp, sp, #40 ; 0x28 and r7, r0, r5 and r8, r1, r6 str r7, [sp, #8] str r8, [sp, #12] mov r9, #0 mov r4, r1 and r5, r0, r9 mov sl, #255 ; 0xff ldr r9, [sp, #8] and r6, r4, sl mov ip, #16711680 ; 0xff0000 str r5, [sp, #16] str r6, [sp, #20] lsl r2, r0, #24 and ip, ip, r1 lsr r7, r4, #24 mov r1, #0 lsr r5, r9, #24 mov sl, #0 mov r9, #-16777216 ; 0xff000000 and fp, r0, r9 lsr r6, ip, #8 orr r9, r7, r1 and ip, r4, sl orr sl, r1, r2 str r6, [sp] str r9, [sp, #32] str sl, [sp, #36] ; 0x24 add r8, sp, #32 ldm r8, r7, r8 str r1, [sp, #4] ldm sp, r9, sl orr r7, r7, r9 orr r8, r8, sl str r7, [sp, #32] str r8, [sp, #36] ; 0x24 mov r3, r0 mov r7, #16711680 ; 0xff0000 mov r8, #0 and r9, r3, r7 and sl, r4, r8 ldr r0, [sp, #16] str fp, [sp, #24] str ip, [sp, #28] stm sp, r9, sl ldr r7, [sp, #20] ldr sl, [sp, #12] ldr fp, [sp, #12] ldr r8, [sp, #28] lsr r0, r0, #8 orr r7, r0, r7, lsl #24 lsr r6, sl, #24 orr r5, r5, fp, lsl #8 lsl sl, r8, #8 mov fp, r7 add r8, sp, #32 ldm r8, r7, r8 orr r6, r6, r8 ldr r8, [sp, #20] ldr r0, [sp, #24] orr r5, r5, r7 lsr r8, r8, #8 orr sl, sl, r0, lsr #24 mov ip, r8 ldr r0, [sp, #4] orr fp, fp, r5 ldr r5, [sp, #24] orr ip, ip, r6 ldr r6, [sp] lsl r9, r5, #8 lsl r8, r0, #24 orr fp, fp, r9 lsl r3, r3, #8 orr r8, r8, r6, lsr #8 orr ip, ip, sl lsl r7, r6, #24 and r5, r3, #16711680 ; 0xff0000 orr r7, r7, fp orr r8, r8, ip orr r4, r1, r7 orr r5, r5, r8 mov r9, r6 mov r1, r5 mov r0, r4 add sp, sp, #40 ; 0x28 pop r4, r5, r6, r7, r8, r9, sl, fp bx lr
That’s right, 91 instructions to move 8 bytes around a bit. GCC definitely has a problem with 64-bit numbers. It is perhaps worth noting that the
bswap_64
macro in glibc splits the 64-bit value into 32-bit halves which are then reversed independently, thus side-stepping this weakness of gcc.As a side note, ARM RVCT (armcc) compiles those functions perfectly into one and two
REV
instructions, respectively.AVR32
There is not much to report here. The latest gcc version available is 4.2.4, which doesn’t appear to have the bswap functions. The other three are handled nicely, even using a bit-reverse for
__builtin_ctz
.MIPS / MIPS64
The situation MIPS is similar to ARM. Both bswap builtins result in external libgcc calls, the rest giving sensible code.
PowerPC
I scarcely believe my eyes, but this one is actually not bad. The PowerPC has no byte-reversal instructions, yet someone seems to have taken the time to teach gcc a good instruction sequence for this operation. The PowerPC does have some powerful rotate-and-mask instructions which come in handy here. First the 32-bit version :
rotlwi r0,r3,8 rlwimi r0,r3,24,0,7 rlwimi r0,r3,24,16,23 mr r3,r0 blr
The 64-bit byte-reversal simply applies the above code on each half of the value :
rotlwi r0,r3,8 rlwimi r0,r3,24,0,7 rlwimi r0,r3,24,16,23 rotlwi r3,r4,8 rlwimi r3,r4,24,0,7 rlwimi r3,r4,24,16,23 mr r4,r0 blr
Although I haven’t analysed that code carefully, it looks pretty good.
PowerPC64
Doing 64-bit operations is easier on a 64-bit CPU, right ? For you and me perhaps, but not for gcc. Here
__builtin_bswap64
gives us the now familiar__bswapdi2
call, and while not as bad as the ARM version, it is not pretty :rldicr r0,r3,8,55 rldicr r10,r3,56,7 rldicr r0,r0,56,15 rldicl r11,r3,8,56 rldicr r9,r3,16,47 or r11,r10,r11 rldicr r9,r9,48,23 rldicl r10,r0,24,40 rldicr r0,r3,24,39 or r11,r11,r10 rldicl r9,r9,40,24 rldicr r0,r0,40,31 or r9,r11,r9 rlwinm r10,r3,0,0,7 rldicl r0,r0,56,8 or r0,r9,r0 rldicr r10,r10,8,55 rlwinm r11,r3,0,8,15 or r0,r0,r10 rldicr r11,r11,24,39 rlwinm r3,r3,0,16,23 or r0,r0,r11 rldicr r3,r3,40,23 or r3,r0,r3 blr
That is 6 times longer than the (presumably) hand-written 32-bit version.
x86 / x86_64
As one might expect, results on x86 are good. All the tested functions use the available special instructions. One word of caution though : the bit-counting instructions are very slow on some implementations, specifically the Atom, AMD chips, and the notoriously slow Pentium4E.
Conclusion
In conclusion, I would say gcc builtins can be useful to avoid fragile inline assembler. Before using them, however, one should make sure they are not in fact harmful on the required targets. Not even those builtins mapping directly to CPU instructions can be trusted.
-
How to compress video applying even blur effect
17 octobre 2016, par KukusterHow to compress video applying well-looking apportioned blur effect, like in JPG image ?
I tried some ffmpeg postprocesing libraries, they are fspp, spp, uspp (takes really long time to render), etc. I almost reached the goal using fspp with parameters 5:60:15 . But blur was stronger than needed, and it’s leave bad artifacts when i try to use less compression. Also uspp is does beautiful and compresses enough, but it’s leave about 50% of video unblured. I also haven’t much time to try all uspp features. Is there resolution special for this purpose ?
The point is to implement video compression with the only side effect of compression approaches jpeg-compression-like blur or blur-mask-like. Also it would be very good if there is a simple option to choose between :
1) more compress, less pretty blur / more strong blur ; and 2) less compress, prettier blur / less strong blur.I am used to use ffmpeg and i’m running linux, so it would be so nice if there is a way to solve this with ffmpeg.
Here is my ffmpeg input data about the video streams :Duration : 00:01:03.02, start : 0.000000, bitrate : 4010 kb/s Stream #0:0(und) : Video : h264 (High) (avc1 / 0x31637661), yuv420p, 1280x720 [SAR 1:1 DAR 16:9], 3870 kb/s, 23.98 fps, 23.98 tbr, 24k tbn, 47.95 tbc (default) Metadata : handler_name : VideoHandler Stream #0:1(eng) : Audio : aac (LC) (mp4a / 0x6134706D), 44100 Hz, stereo, fltp, 133 kb/s (default) Metadata : handler_name : SoundHandler
Edit : attaching jpeg pictured as example of desired output :