Recherche avancée

Médias (2)

Mot : - Tags -/plugins

Autres articles (26)

  • Personnaliser en ajoutant son logo, sa bannière ou son image de fond

    5 septembre 2013, par

    Certains thèmes prennent en compte trois éléments de personnalisation : l’ajout d’un logo ; l’ajout d’une bannière l’ajout d’une image de fond ;

  • Ecrire une actualité

    21 juin 2013, par

    Présentez les changements dans votre MédiaSPIP ou les actualités de vos projets sur votre MédiaSPIP grâce à la rubrique actualités.
    Dans le thème par défaut spipeo de MédiaSPIP, les actualités sont affichées en bas de la page principale sous les éditoriaux.
    Vous pouvez personnaliser le formulaire de création d’une actualité.
    Formulaire de création d’une actualité Dans le cas d’un document de type actualité, les champs proposés par défaut sont : Date de publication ( personnaliser la date de publication ) (...)

  • Publier sur MédiaSpip

    13 juin 2013

    Puis-je poster des contenus à partir d’une tablette Ipad ?
    Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir

Sur d’autres sites (7845)

  • How to fix the problem of wrong colors shown in the local video window of MicroSIP ?

    25 juillet 2022, par Yadid

    I'm developing a project which is a customization based on MicroSIP in Windows. The local video window performs the video stream from Screen Capture Recorder, which is as a virtual camera and captures the screen. And the problem is the colors of the picture of the local video window are not correct. The picture I uploaded is the example of the problem, it seems like that the red and the blue are exchanged.

    
I'd tried to upgrade the FFmpeg to 5.0.1 and the SDL to 2.0.22, both are probably the latest versions, but it doesn't fix the color problem.

    
This problem also occurs when using the latest official version of MicroSIP(3.21.2).
    
source code of MicroSIP
    
source code of PJSIP (the low-level module which provides interfaces for video, audio, etc. Maybe it's the origin of the color problem)
    
And while using some of the other software which can display pictures of the virtual camera, they can show pictures fine with the correct colors, e.g. MyCam.

    
How to fix this problem ? Or which parts can I do some research on about this problem ? Any help would be appreciated.

    


  • Converting uint8_t data to AVFrame with FFmpeg

    30 octobre 2017, par J.Lefebvre

    I am currently working in C++ with the Autodesk 3DStudio Max 2014 SDK (toolset 100) and the Ffmpeg library in Visual Studio 2015 and trying to convert a DIB (Device Independent Bitmap) to uint8_t pointer array and then convert these data to an AVFrame.

    I don’t have any errors, but my video is still black and without meta data.
    (no time display, etc)

    I made approximatively the same with a Visual Studio Console application to convert jpeg image sequence from disk and this is working fine.
    (The only difference is that instead of converting jpeg to AVFrame with the Ffmpeg library, I try to convert raw data to an AVFrame.)

    So I think the problem could be either on the DIB conversion to the uint8_t data or the uint8_t data to the AVFrame.
    (The second is more plausible, because I used the SFML library to display a window with my rgb uint8_t* data for debuging and it is working fine.)

    I first initialize the ffmpeg library :

    This function is called once at the beginning.

    int Converter::Initialize(AVCodecID codec_id, int width, int height, int fps, const char *filename)
    {
       avcodec_register_all();
       av_register_all();

       AVCodec *codec;
       inputFrame = NULL;
       codecContext = NULL;
       pkt = NULL;
       file = NULL;
       outputFilename = new char[strlen(filename)]();
       *outputFilename = '\0';
       strcpy(outputFilename, filename);

       int ret;

       //Initializing AVCodecContext and getting PixelFormat supported by encoder
       codec = avcodec_find_encoder(codec_id);
       if (!codec)
           return 1;

       AVPixelFormat pixFormat = codec->pix_fmts[0];
       codecContext = avcodec_alloc_context3(codec);
       if (!codecContext)
           return 1;

       codecContext->bit_rate = 400000;
       codecContext->width = width;
       codecContext->height = height;
       codecContext->time_base.num = 1;
       codecContext->time_base.den = fps;
       codecContext->gop_size = 10;
       codecContext->max_b_frames = 1;
       codecContext->pix_fmt = pixFormat;

       if (codec_id == AV_CODEC_ID_H264)
           av_opt_set(codecContext->priv_data, "preset", "slow", 0);

       //Actually opening the encoder
       if (avcodec_open2(codecContext, codec, NULL) < 0)
           return 1;

       file = fopen(outputFilename, "wb");
       if (!file)
           return 1;

       inputFrame = av_frame_alloc();
       inputFrame->format = codecContext->pix_fmt;
       inputFrame->width = codecContext->width;
       inputFrame->height = codecContext->height;

       ret = av_image_alloc(inputFrame->data, inputFrame->linesize, codecContext->width, codecContext->height, codecContext->pix_fmt, 32);

       if (ret < 0)
           return 1;

       return 0;
    }

    Then for each frame, I get the DIB and convert to a uint8_t* it with this function :

    uint8_t* Util::ToUint8_t(RGBQUAD *data, int width, int height)
    {
       uint8_t* buf = (uint8_t*)data;

       int imageSize = width * height;
       size_t rgbquad_size = sizeof(RGBQUAD);
       size_t total_bytes = imageSize * rgbquad_size;
       uint8_t * pCopyBuffer = new uint8_t[total_bytes];

       for (int x = 0; x < width; x++)
       {
           for (int y = 0; y < height; y++)
           {
               int index = (x + width * y) * rgbquad_size;
               int invertIndex = (x + width* (height - y - 1)) * rgbquad_size;

               //BGRA to RGBA
               pCopyBuffer[index] = buf[invertIndex + 2];
               pCopyBuffer[index + 1] = buf[invertIndex + 1];
               pCopyBuffer[index + 2] = buf[invertIndex];
               pCopyBuffer[index + 3] = 0xFF;
           }
       }

       return pCopyBuffer;
    }

    void GetDIBBuffer(Interface* ip, BITMAPINFO *bmi, uint8_t** outBuffer)
    {
       int size;

       ViewExp& view = ip->GetActiveViewExp();

       view.getGW()->getDIB(NULL, &size);

       bmi = (BITMAPINFO *)malloc(size);
       BITMAPINFOHEADER *bmih = (BITMAPINFOHEADER *)bmi;
       view.getGW()->getDIB(bmi, &size);

       uint8_t * pCopyBuffer = Util::ToUint8_t(bmi->bmiColors, bmih->biWidth, bmih->biHeight);

       *outBuffer = pCopyBuffer;
    }

    This function is used to get the DIB :

    void GetViewportDIB(Interface* ip, BITMAPINFO *bmi, BITMAPINFOHEADER *bmih, BitmapInfo biFile, Bitmap *map)
    {
       int size;

       if (!biFile.Name()[0])
           return;

       ViewExp& view = ip->GetActiveViewExp();

       view.getGW()->getDIB(NULL, &size);

       bmi = (BITMAPINFO *)malloc(size);
       bmih = (BITMAPINFOHEADER *)bmi;

       view.getGW()->getDIB(bmi, &size);

       biFile.SetWidth((WORD)bmih->biWidth);
       biFile.SetHeight((WORD)bmih->biHeight);
       biFile.SetType(BMM_TRUE_32);

       map = TheManager->Create(&biFile);
       map->OpenOutput(&biFile);
       map->FromDib(bmi);
       map->Write(&biFile);
       map->Close(&biFile);
    }

    And after the conversion to AVFrame and video encoding :

    The EncodeFromMem function is call each frame.

    int Converter::EncodeFromMem(const char *outputDir, int frameNumber, uint8_t* data)
    {
       int ret;

       inputFrame->pts = frameNumber;
       EncodeFrame(data, codecContext, inputFrame, &pkt, file);

       return 0;
    }

    static void RgbToYuv(uint8_t *rgb, AVCodecContext *c, AVFrame *frame)
    {
       struct SwsContext *swsCtx = NULL;
       const int in_linesize[1] = { 3 * c->width };// RGB stride
       swsCtx = sws_getCachedContext(swsCtx, c->width, c->height, AV_PIX_FMT_RGB24, c->width, c->height, AV_PIX_FMT_YUV420P, 0, 0, 0, 0);
       sws_scale(swsCtx, (const uint8_t * const *)&rgb, in_linesize, 0, c->height, frame->data, frame->linesize);
    }

    static void EncodeFrame(uint8_t *rgb, AVCodecContext *c, AVFrame *frame, AVPacket **pkt, FILE *file)
    {
       int ret, got_output;

       RgbToYuv(rgb, c, frame);

       *pkt = av_packet_alloc();
       av_init_packet(*pkt);
       (*pkt)->data = NULL;
       (*pkt)->size = 0;

       ret = avcodec_encode_video2(c, *pkt, frame, &got_output);
       if (ret < 0)
       {
           fprintf(stderr, "Error encoding frame/n");
           exit(1);
       }
       if (got_output)
       {
           fwrite((*pkt)->data, 1, (*pkt)->size, file);
           av_packet_unref(*pkt);
       }
    }

    To finish I have a function that write the packets and free the memory :
    This function is called once at the end of the time range.

    int Converter::Finalize()
    {
       int ret, got_output;
       uint8_t endcode[] = { 0, 0, 1, 0xb7 };

       /* get the delayed frames */
       do
       {
           fflush(stdout);
           ret = avcodec_encode_video2(codecContext, pkt, NULL, &got_output);
           if (ret < 0)
           {
               fprintf(stderr, "Error encoding frame/n");
               return 1;
           }
           if (got_output)
           {
               fwrite(pkt->data, 1, pkt->size, file);
               av_packet_unref(pkt);
           }
       } while (got_output);

       fwrite(endcode, 1, sizeof(endcode), file);
       fclose(file);

       avcodec_close(codecContext);
       av_free(codecContext);

       av_frame_unref(inputFrame);
       av_frame_free(&inputFrame);
       //av_freep(&inputFrame->data[0]); //Crash

       delete outputFilename;
       outputFilename = 0;

       return 0;
    }

    EDIT :

    I modify my RgbToYuv function and create another one to convert back the yuv frame to an rgb one.

    This not really solve the problem, but maybe focus the problem on the conversion from YuvToRgb.

    This is the result of the conversion from YUV to RGB :

     ![YuvToRgb result] : https://img42.com/kHqpt+

    static void YuvToRgb(AVCodecContext *c, AVFrame *frame)
    {
       struct SwsContext *img_convert_ctx = sws_getContext(c->width, c->height, AV_PIX_FMT_YUV420P, c->width, c->height, AV_PIX_FMT_RGB24, SWS_BICUBIC, NULL, NULL, NULL);
       AVFrame * rgbPictInfo = av_frame_alloc();
       avpicture_fill((AVPicture*)rgbPictInfo, *(frame)->data, AV_PIX_FMT_RGB24, c->width, c->height);
       sws_scale(img_convert_ctx, frame->data, frame->linesize, 0, c->height, rgbPictInfo->data, rgbPictInfo->linesize);

       Util::DebugWindow(c->width, c->height, rgbPictInfo->data[0]);
    }
    static void RgbToYuv(uint8_t *rgb, AVCodecContext *c, AVFrame *frame)
    {
       AVFrame * rgbPictInfo = av_frame_alloc();
       avpicture_fill((AVPicture*)rgbPictInfo, rgb, AV_PIX_FMT_RGBA, c->width, c->height);

       struct SwsContext *swsCtx = sws_getContext(c->width, c->height, AV_PIX_FMT_RGBA, c->width, c->height, AV_PIX_FMT_YUV420P, SWS_BICUBIC, NULL, NULL, NULL);
       avpicture_fill((AVPicture*)frame, rgb, AV_PIX_FMT_YUV420P, c->width, c->height);    
       sws_scale(swsCtx, rgbPictInfo->data, rgbPictInfo->linesize, 0, c->height, frame->data, frame->linesize);

       YuvToRgb(c, frame);
    }
  • Greed is Good ; Greed Works

    25 novembre 2010, par Multimedia Mike — VP8

    Greed, for lack of a better word, is good ; Greed works. Well, most of the time. Maybe.

    Picking Prediction Modes
    VP8 uses one of 4 prediction modes to predict a 16x16 luma block or 8x8 chroma block before processing it (for luma, a block can also be broken into 16 4x4 blocks for individual prediction using even more modes).

    So, how to pick the best predictor mode ? I had no idea when I started writing my VP8 encoder. I did not read any literature on the matter ; I just sat down and thought of a brute-force approach. According to the comments in my code :

    // naive, greedy algorithm :
    //   residual = source - predictor
    //   mean = mean(residual)
    //   residual -= mean
    //   find the max diff between the mean and the residual
    // the thinking is that, post-prediction, the best block will
    // be comprised of similar samples
    

    After removing the predictor from the macroblock, individual 4x4 subblocks are put through a forward DCT and quantized. Optimal compression in this scenario results when all samples are the same since only the DC coefficient will be non-zero. Failing that, when the input samples are at least similar to each other, few of the AC coefficients will be non-zero, which helps compression. When the samples are all over the scale, there aren’t a whole lot of non-zero coefficients unless you crank up the quantizer, which results in poor quality in the reconstructed subblocks.

    Thus, my goal was to pick a prediction mode that, when applied to the input block, resulted in a residual in which each element would feature the least deviation from the mean of the residual (relative to other prediction choices).

    Greedy Approach
    I realized that this algorithm falls into the broad general category of "greedy" algorithms— one that makes locally optimal decisions at each stage. There are most likely smarter algorithms. But this one was good enough for making an encoder that just barely works.

    Compression Results
    I checked the total file compression size on my usual 640x360 Big Buck Bunny logo image while forcing prediction modes vs. using my greedy prediction picking algorithm. In this very simple test, DC-only actually resulted in slightly better compression than the greedy algorithm (which says nothing about overall quality).

    prediction mode quantizer index = 0 (minimum) quantizer index = 10
    greedy 286260 98028
    DC 280593 95378
    vertical 297206 105316
    horizontal 295357 104185
    TrueMotion 311660 113480

    As another data point, in both quantizer cases, my greedy algorithm selected a healthy mix of prediction modes :

    • quantizer index 0 : DC = 521, VERT = 151, HORIZ = 183, TM = 65
    • quantizer index 10 : DC = 486, VERT = 167, HORIZ = 190, TM = 77

    Size vs. Quality
    Again, note that this ad-hoc test only measures one property (a highly objective one)— compression size. It did not account for quality which is a far more controversial topic that I have yet to wade into.