Recherche avancée

Médias (2)

Mot : - Tags -/kml

Autres articles (39)

  • List of compatible distributions

    26 avril 2011, par

    The table below is the list of Linux distributions compatible with the automated installation script of MediaSPIP. Distribution nameVersion nameVersion number Debian Squeeze 6.x.x Debian Weezy 7.x.x Debian Jessie 8.x.x Ubuntu The Precise Pangolin 12.04 LTS Ubuntu The Trusty Tahr 14.04
    If you want to help us improve this list, you can provide us access to a machine whose distribution is not mentioned above or send the necessary fixes to add (...)

  • Emballe médias : à quoi cela sert ?

    4 février 2011, par

    Ce plugin vise à gérer des sites de mise en ligne de documents de tous types.
    Il crée des "médias", à savoir : un "média" est un article au sens SPIP créé automatiquement lors du téléversement d’un document qu’il soit audio, vidéo, image ou textuel ; un seul document ne peut être lié à un article dit "média" ;

  • Submit enhancements and plugins

    13 avril 2011

    If you have developed a new extension to add one or more useful features to MediaSPIP, let us know and its integration into the core MedisSPIP functionality will be considered.
    You can use the development discussion list to request for help with creating a plugin. As MediaSPIP is based on SPIP - or you can use the SPIP discussion list SPIP-Zone.

Sur d’autres sites (5529)

  • GDPR Compliance and Personal Data : The Ultimate Guide

    22 septembre 2023, par Erin — GDPR

    According to the International Data Corporation (IDC), the world generated 109 zettabytes of data in 2022 alone, and that number is on track to nearly triple to 291 zettabytes in 2027. For scale, that’s one trillion gigs or one followed by 21 zeros in bytes.

    A major portion of that data is generated online, and the conditions for securing that digital data can have major real-world consequences. For example, online identifiers that fall into the wrong hands can be used nefariously for cybercrime, identity theft or unwanted targeting. Users also want control over how their actions are tracked online and transparency into how their information is used.

    Therefore, regional and international regulations are necessary to set the terms for respecting users’ privacy and control over personal information. Perhaps the most widely known of these laws is the European Union’s General Data Protection Regulation (GDPR).

    What is personal data under GDPR ?

    Under the General Data Protection Regulation (GDPR), “personal data” refers to information linked to an identifiable natural person. An “identifiable natural person” is someone directly or indirectly recognisable via individually specific descriptors such as physical, genetic, economic, cultural, employment and social details.

    It’s important to note that under GDPR, the definition of personal data is very broad, and it encompasses both information that is commonly considered personal (e.g., names and addresses) and more technical or specialised data (e.g., IP addresses or device IDs) that can be used to identify individuals indirectly.

    Organisations that handle personal data must adhere to strict rules and principles regarding the processing and protection of this data to ensure individuals’ privacy rights are respected and upheld.

    Personal data can include, but is not limited to, the following :

    1. Basic Identity Information : This includes a person’s name, government-issued ID number, social address, phone number, email address or other similar identifiers.
    2. Biographical Information : Details such as date of birth, place of birth, nationality and gender.
    3. Contact Information : Information that allows communication with the individual, such as phone numbers, email addresses or mailing addresses.
    4. Financial Information : Data related to a person’s finances, including credit card numbers, bank account numbers, income records or financial transactions.
    5. Health and Medical Information : Information about a person’s health, medical history or healthcare treatments.
    6. Location Data : Data that can pinpoint a person’s geographical location, such as GPS coordinates or information derived from mobile devices.
    7. Online Identifiers : Information like IP addresses, cookies or other online tracking mechanisms that can be used to identify or track individuals online.
    8. Biometric Data : Unique physical or behavioural characteristics used for identification, such as fingerprints, facial recognition data or voiceprints.

    Sensitive Data

    Sensitive data is a special category of personal data prohibited from processing unless specific conditions are met, including users giving explicit consent. The data must also be necessary to fulfil one or more of a limited set of allowed purposes, such as reasons related to employment, social protections or legal claims.

    Sensitive information includes details about a person’s racial or ethnic origin, sexual orientation, political opinions, religion, trade union membership, biometric data or genetic data.

    What are the 7 main principles of GDPR ?

    The 7 principles of GDPR guide companies in how to properly handle personal data gathered from their users.

    A list of the main principles to follow for GDPR personal data handling

    The seven principles of GDPR are :

    1. Lawfulness, fairness and transparency

    Lawfulness means having legal grounds for data processing, such as consent, legitimate interests, contract and legal obligation. If you can achieve your objective without processing personal data, the basis is no longer lawful.

    Fairness means you’re processing data reasonably and in line with users’ best interests, and they wouldn’t be shocked if they find out what you’re using it for.

    Transparency means being open regarding when you’re processing user data, what you’re using it for and who you’re collecting it from.

    To get started with this, use our guide on creating a GDPR-compliant privacy policy.

    2. Purpose limitation

    You should only process user data for the original purposes you communicated to users when requesting their explicit consent. If you aim to undertake a new purpose, it must be compatible with the original stated purpose. Otherwise, you’ll need to ask for consent again.

    3. Data minimisation

    You should only collect as much data as you need to accomplish compliant objectives and nothing more, especially not other personally identifiable information (PII).

    Matomo provides several features for extensive data minimisation, including the ability to anonymize IP addresses.

    Data minimisation is well-liked by users. Around 70% of people have taken active steps towards protecting their identity online, so they’ll likely appreciate any principles that help them in this effort.

    4. Accuracy

    The user data you process should be accurate and up-to-date where necessary. You should have reasonable systems to catch inaccurate data and correct or delete it. If there are mistakes that you need to store, then you need to label them clearly as mistakes to keep them from being processed as accurate.

    5. Storage limitation

    This principle requires you to eliminate data you’re no longer using for the original purposes. You must implement time limits, after which you’ll delete or anonymize any user data on record. Matomo allows you to configure your system such that logs are automatically deleted after some time.

    6. Integrity and confidentiality

    This requires that data processors have security measures in place to protect data from threats such as hackers, loss and damage. As an open-source web analytics solution, Matomo enables you to verify its security first-hand.

    7. Accountability

    Accountability means you’re responsible for what you do with the data you collect. It’s your duty to maintain compliance and document everything for audits. Matomo tracks a lot of the data you’d need for this, including activity, task and application logs.

    Who does GDPR apply to ?

    The GDPR applies to any company that processes the personal data of EU citizens and residents (regardless of the location of the company). 

    If this is the first time you’ve heard about this, don’t worry ! Matomo provides tools that allow you to determine exactly what kinds of data you’re collecting and how they must be handled for full compliance. 

    Best practices for processing personal data under GDPR

    Companies subject to the GDPR need to be aware of several key principles and best practices to ensure they process personal data in a lawful and responsible manner.

    Here are some essential practices to implement :

    1. Lawful basis for processing : Organisations must have a lawful basis for processing personal data. Common lawful bases include the necessity of processing for compliance with a legal obligation, the performance of a contract, the protection of vital interests and tasks carried out in the public interest. Your organisation’s legitimate interests for processing must not override the individual’s legal rights. 
    2. Data minimisation : Collect and process only the personal data that is necessary for the specific purpose for which it was collected. Matomo’s anonymisation capabilities help you avoid collecting excessive or irrelevant data.
    3. Transparency : Provide clear and concise information to individuals about how their data will be processed. Privacy statements should be clear and accessible to users to allow them to easily understand how their data is used.
    4. Consent : If you are relying on consent as a lawful basis, make sure you design your privacy statements and consent forms to be usable. This lets you ensure that consent is freely given, specific, informed and unambiguous. Also, individuals must be able to withdraw their consent at any time.
    5. Data subject rights : You must have mechanisms in place to uphold the data subject’s individual rights, such as the rights to access, erase, rectify errors and restrict processing. Establish internal processes for handling such requests.
    6. Data protection impact assessments (DPIAs) : Conduct DPIAs for high-risk processing activities, especially when introducing new technologies or processing sensitive data.
    7. Security measures : You must implement appropriate technical security measures to maintain the safety of personal data. This can include ‌security tools such as encryption, firewalls and limited access controls, as well as organisational practices like regular security assessments. 
    8. Data breach response : Develop and maintain a data breach response plan. Notify relevant authorities and affected individuals of data breaches within the required timeframe.
    9. International data transfers : If transferring personal data outside the EU, ensure that appropriate safeguards are in place and consider GDPR provisions. These provisions allow data transfers from the EU to non-EU countries in three main ways :
      1. When the destination country has been deemed by the European Commission to have adequate data protection, making it similar to transferring data within the EU.
      2. Through the use of safeguards like binding corporate rules, approved contractual clauses or adherence to codes of conduct.
      3. In specific situations when none of the above apply, such as when an individual explicitly consents to the transfer after being informed of the associated risks.
    10. Data protection officers (DPOs) : Appoint a data protection officer if required by GDPR. DPOs are responsible for overseeing data protection compliance within the organisation.
    11. Privacy by design and default : Integrate data protection into the design of systems and processes. Default settings should prioritise user privacy, as is the case with something like Matomo’s first-party cookies.
    12. Documentation : Maintain records of data processing activities, including data protection policies, procedures and agreements. Matomo logs and backs up web server access, activity and more, providing a solid audit trail.
    13. Employee training : Employees who handle personal data must be properly trained to uphold data protection principles and GDPR compliance best practices. 
    14. Third-party contracts : If sharing data with third parties, have data processing agreements in place that outline the responsibilities and obligations of each party regarding data protection.
    15. Regular audits and assessments : Conduct periodic audits and assessments of data processing activities to ensure ongoing compliance. As mentioned previously, Matomo tracks and saves several key statistics and metrics that you’d need for a successful audit.
    16. Accountability : Demonstrate accountability by documenting and regularly reviewing compliance efforts. Be prepared to provide evidence of compliance to data protection authorities.
    17. Data protection impact on data analytics and marketing : Understand how GDPR impacts data analytics and marketing activities, including obtaining valid consent for marketing communications.

    Organisations should be on the lookout for GDPR updates, as the regulations may evolve over time. When in doubt, consult legal and privacy professionals to ensure compliance, as non-compliance could potentially result in significant fines, damage to reputation and legal consequences.

    What constitutes a GDPR breach ?

    Security incidents that compromise the confidentiality, integrity and/or availability of personal data are considered a breach under GDPR. This means a breach is not limited to leaks ; if you accidentally lose or delete personal data, its availability is compromised, which is technically considered a breach.

    What are the penalty fines for GDPR non-compliance ?

    The penalty fines for GDPR non-compliance are up to €20 million or up to 4% of the company’s revenue from the previous fiscal year, whichever is higher. This makes it so that small companies can also get fined, no matter how low-profile the breach is.

    In 2022, for instance, a company found to have mishandled user data was fined €2,000, and the webmaster responsible was personally fined €150.

    Is Matomo GDPR compliant ?

    Matomo is fully GDPR compliant and can ensure you achieve compliance, too. Here’s how :

    • Data anonymization and IP anonymization
    • GDPR Manager that helps you identify gaps in your compliance and address them effectively
    • Users can opt-out of all tracking
    • First-party cookies by default
    • Users can view the data collected
    • Capabilities to delete visitor data when requested
    • You own your data and it is not used for any other purposes (like advertising)
    • Visitor logs and profiles can be disabled
    • Data is stored in the EU (Matomo Cloud) or in any country of your choice (Matomo On-Premise)

    Is there a GDPR in the US ?

    There is no GDPR-equivalent law that covers the US as a whole. That said, US-based companies processing data from persons in the EU still need to adhere to GDPR principles.

    While there isn’t a federal data protection law, several states have enacted their own. One notable example is the California Consumer Privacy Act (CCPA), which Matomo is fully compliant with.

    Ready for GDPR-compliant analytics ?

    The GDPR lays out a set of regulations and penalties that govern the collection and processing of personal data from EU citizens and residents. A breach under GDPR attracts a fine of either up to €20 million or 4% of the company’s revenue, and the penalty applies to companies of all sizes.

    Matomo is fully GDPR compliant and provides several features and advanced privacy settings to ensure you ‌are as well, without sacrificing the resources you need for effective analytics. If you’re ready to get started, sign up for a 21-day free trial of Matomo — no credit card required.

    Disclaimer
    We are not lawyers and don’t claim to be. The information provided here is to help give an introduction to GDPR. We encourage every business and website to take data privacy seriously and discuss these issues with your lawyer if you have any concerns.

  • FFMPEG error submitting a packet to the muxer

    27 juillet 2024, par Badgio10177

    I am attempting to stream video frames to a RTSP server using FFMPEG. I instantiate an ffmpeg pipeline in c++. There are times when the process works perfectly and other times I get the error Error submitting a packet to the muxer : Broken pipe. Error muxing a packet. What uis strange is that there are times when the stream works and times when it does not which leads me to believe that the FFMPEG parameters that I set are not necessarily incorrect.

    


    I am using a mex function within MATLAB to take in a frame and stream it.

    


    // Global variables&#xA;FILE* openPipeLine = NULL;&#xA;&#xA;void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[], int frameWidth, int frameHeight)&#xA;{&#xA;&#xA;    Ptr<mat> inputFrame = ocvMxArrayToImage_uint8(prhs[0], true);&#xA;    Mat processedFrame = *inputFrame;&#xA;&#xA;    // Check if FFMPEG process has been started&#xA;    if (!openPipeLine)&#xA;    {&#xA;        openPipeLine = _popen("ffmpeg -report -f rawvideo -r 10 -video_size 1280x720 -pixel_format bgr24 -i pipe: -vcodec libx264 -pix_fmt yuv420p -f rtsp rtsp://localhost:8554/mystream 2> log.txt", "wb");&#xA;&#xA;    }&#xA;&#xA;    // Write the frame data to the pipeline&#xA;    fwrite(processedFrame.data, 1, frameWidth * frameHeight * 3, openPipeLine);&#xA;    mexAtExit(exitFcn);&#xA;}&#xA;</mat>

    &#xA;

    Below is the full report from the ffmpeg process. Do my operating system variables change from time to time which cause the stream to work at times and break at others ? I am using Windows 10.

    &#xA;

    Log level: 48&#xA;Command line:&#xA;ffmpeg -report -f rawvideo -r 10 -video_size 1280x720 -pixel_format bgr24 -i pipe: -vcodec libx264 -pix_fmt yuv420p -f rtsp rtsp://localhost:8554/mystream&#xA;&#xA;  built with gcc 12.2.0 (Rev10, Built by MSYS2 project)&#xA;  configuration: --enable-gpl --enable-version3 --enable-static --disable-w32threads --disable-autodetect --enable-fontconfig --enable-iconv --enable-gnutls --enable-libxml2 --enable-gmp --enable-bzlib --enable-lzma --enable-libsnappy --enable-zlib --enable-librist --enable-libsrt --enable-libssh --enable-libzmq --enable-avisynth --enable-libbluray --enable-libcaca --enable-sdl2 --enable-libaribb24 --enable-libaribcaption --enable-libdav1d --enable-libdavs2 --enable-libuavs3d --enable-libzvbi --enable-librav1e --enable-libsvtav1 --enable-libwebp --enable-libx264 --enable-libx265 --enable-libxavs2 --enable-libxvid --enable-libaom --enable-libjxl --enable-libopenjpeg --enable-libvpx --enable-mediafoundation --enable-libass --enable-frei0r --enable-libfreetype --enable-libfribidi --enable-libharfbuzz --enable-liblensfun --enable-libvidstab --enable-libvmaf --enable-libzimg --enable-amf --enable-cuda-llvm --enable-cuvid --enable-ffnvcodec --enable-nvdec --enable-nvenc --enable-d3d11va --enable-dxva2 --enable-lib  libavutil      58. 16.101 / 58. 16.101&#xA;  libavcodec     60. 23.100 / 60. 23.100&#xA;  libavformat    60. 10.100 / 60. 10.100&#xA;  libavdevice    60.  2.101 / 60.  2.101&#xA;  libavfilter     9. 11.100 /  9. 11.100&#xA;  libswscale      7.  3.100 /  7.  3.100&#xA;  libswresample   4. 11.100 /  4. 11.100&#xA;  libpostproc    57.  2.100 / 57.  2.100&#xA;Splitting the commandline.&#xA;&#xA;Successfully parsed a group of options.&#xA;Opening an input file: pipe:.&#xA;[rawvideo @ 00000182dba5efc0] Opening &#x27;pipe:&#x27; for reading&#xA;[pipe @ 00000182dba611c0] Setting default whitelist &#x27;crypto,data&#x27;&#xA;[rawvideo @ 00000182dba5efc0] Before avformat_find_stream_info() pos: 0 bytes read:65536 seeks:0 nb_streams:1&#xA;[rawvideo @ 00000182dba5efc0] All info found&#xA;[rawvideo @ 00000182dba5efc0] After avformat_find_stream_info() pos: 2764800 bytes read:2764800 seeks:0 frames:1&#xA;Input #0, rawvideo, from &#x27;pipe:&#x27;:&#xA;  Duration: N/A, start: 0.000000, bitrate: 221184 kb/s&#xA;  Stream #0:0, 1, 1/10: Video: rawvideo (BGR[24] / 0x18524742), bgr24, 1280x720, 221184 kb/s, 10 tbr, 10 tbn&#xA;Successfully opened the file.&#xA;Parsing a group of options: output url rtsp://192.168.0.2:8554/mystream.&#xA;Applying option vcodec (force video codec (&#x27;copy&#x27; to copy stream)) with argument libx264.&#xA;Applying option pix_fmt (set pixel format) with argument yuv420p.&#xA;Applying option f (force format) with argument rtsp.&#xA;Successfully parsed a group of options.&#xA;Opening an output file: rtsp://192.168.0.2:8554/mystream.&#xA;[out#0/rtsp @ 00000182dba72c00] No explicit maps, mapping streams automatically...&#xA;[vost#0:0/libx264 @ 00000182dba75cc0] Created video stream from input stream 0:0&#xA;Successfully opened the file.&#xA;Stream mapping:&#xA;  Stream #0:0 -> #0:0 (rawvideo (native) -> h264 (libx264))&#xA;[rawvideo @ 00000182dba72700] PACKET SIZE: 2764800, STRIDE: 3840&#xA;detected 16 logical cores&#xA;[graph 0 input from stream 0:0 @ 00000182dba86180] Setting &#x27;video_size&#x27; to value &#x27;1280x720&#x27;&#xA;[graph 0 input from stream 0:0 @ 00000182dba86180] Setting &#x27;pix_fmt&#x27; to value &#x27;3&#x27;&#xA;[graph 0 input from stream 0:0 @ 00000182dba86180] Setting &#x27;time_base&#x27; to value &#x27;1/10&#x27;&#xA;[graph 0 input from stream 0:0 @ 00000182dba86180] Setting &#x27;pixel_aspect&#x27; to value &#x27;0/1&#x27;&#xA;[graph 0 input from stream 0:0 @ 00000182dba86180] Setting &#x27;frame_rate&#x27; to value &#x27;10/1&#x27;&#xA;[graph 0 input from stream 0:0 @ 00000182dba86180] w:1280 h:720 pixfmt:bgr24 tb:1/10 fr:10/1 sar:0/1&#xA;[format @ 00000182dba86540] Setting &#x27;pix_fmts&#x27; to value &#x27;yuv420p&#x27;&#xA;[auto_scale_0 @ 00000182dba869c0] w:iw h:ih flags:&#x27;&#x27; interl:0&#xA;[format @ 00000182dba86540] auto-inserting filter &#x27;auto_scale_0&#x27; between the filter &#x27;Parsed_null_0&#x27; and the filter &#x27;format&#x27;&#xA;[AVFilterGraph @ 00000182dba49040] query_formats: 4 queried, 2 merged, 1 already done, 0 delayed&#xA;[auto_scale_0 @ 00000182dba869c0] w:1280 h:720 fmt:bgr24 sar:0/1 -> w:1280 h:720 fmt:yuv420p sar:0/1 flags:0x00000004&#xA;[libx264 @ 00000182dba76080] using mv_range_thread = 24&#xA;[libx264 @ 00000182dba76080] using cpu capabilities: MMX2 SSE2Fast SSSE3 SSE4.2 AVX FMA3 BMI2 AVX2 AVX512&#xA;[libx264 @ 00000182dba76080] profile High, level 3.1, 4:2:0, 8-bit&#xA;[libx264 @ 00000182dba76080] 264 - core 164 r3107 a8b68eb - H.264/MPEG-4 AVC codec - Copyleft 2003-2023 - http://www.videolan.org/x264.html - options: cabac=1 ref=3 deblock=1:0:0 analyse=0x3:0x113 me=hex subme=7 psy=1 psy_rd=1.00:0.00 mixed_ref=1 me_range=16 chroma_me=1 trellis=1 8x8dct=1 cqm=0 deadzone=21,11 fast_pskip=1 chroma_qp_offset=-2 threads=22 lookahead_threads=3 sliced_threads=0 nr=0 decimate=1 interlaced=0 bluray_compat=0 constrained_intra=0 bframes=3 b_pyramid=2 b_adapt=1 b_bias=0 direct=1 weightb=1 open_gop=0 weightp=2 keyint=250 keyint_min=10 scenecut=40 intra_refresh=0 rc_lookahead=40 rc=crf mbtree=1 crf=23.0 qcomp=0.60 qpmin=0 qpmax=69 qpstep=4 ip_ratio=1.40 aq=1:1.00&#xA;[tcp @ 00000182dc5ce480] No default whitelist set&#xA;[tcp @ 00000182dc5ce480] Original list of addresses:&#xA;[tcp @ 00000182dc5ce480] Address 192.168.0.2 port 8554&#xA;[tcp @ 00000182dc5ce480] Interleaved list of addresses:&#xA;[tcp @ 00000182dc5ce480] Address 192.168.0.2 port 8554&#xA;[tcp @ 00000182dc5ce480] Starting connection attempt to 192.168.0.2 port 8554&#xA;[tcp @ 00000182dc5ce480] Successfully connected to 192.168.0.2 port 8554&#xA;[rtsp @ 00000182dba72d00] SDP:&#xA;v=0&#xA;&#xA;o=- 0 0 IN IP4 127.0.0.1&#xA;&#xA;s=No Name&#xA;&#xA;c=IN IP4 192.168.0.2&#xA;&#xA;t=0 0&#xA;&#xA;a=tool:libavformat 60.10.100&#xA;&#xA;m=video 0 RTP/AVP 96&#xA;&#xA;a=rtpmap:96 H264/90000&#xA;&#xA;a=fmtp:96 packetization-mode=1; sprop-parameter-sets=Z2QAH6zZQFAFuhAAAAMAEAAAAwFA8YMZYA==,aOvjyyLA; profile-level-id=64001F&#xA;&#xA;a=control:streamid=0&#xA;&#xA;&#xA;[rtp @ 00000182dc5cd040] No default whitelist set&#xA;[udp @ 00000182dba4b140] No default whitelist set&#xA;[udp @ 00000182dba4b140] end receive buffer size reported is 393216&#xA;[udp @ 00000182dc9bf040] No default whitelist set&#xA;[udp @ 00000182dc9bf040] end receive buffer size reported is 393216&#xA;Output #0, rtsp, to &#x27;rtsp://192.168.0.2:8554/mystream&#x27;:&#xA;  Metadata:&#xA;    encoder         : Lavf60.10.100&#xA;  Stream #0:0, 0, 1/90000: Video: h264, yuv420p(tv, progressive), 1280x720, q=2-31, 10 fps, 90k tbn&#xA;    Metadata:&#xA;      encoder         : Lavc60.23.100 libx264&#xA;    Side data:&#xA;      cpb: bitrate max/min/avg: 0/0/0 buffer size: 0 vbv_delay: N/A&#xA;frame=    0 fps=0.0 q=0.0 size=       0kB time=N/A bitrate=N/A speed=N/A    &#xA;[rawvideo @ 00000182dba72700] PACKET SIZE: 2764800, STRIDE: 3840&#xA;[rawvideo @ 00000182dba72700] PACKET SIZE: 2764800, STRIDE: 3840&#xA;frame=    0 fps=0.0 q=0.0 size=       0kB time=N/A bitrate=N/A speed=N/A    &#xA;[rawvideo @ 00000182dba72700] PACKET SIZE: 2764800, STRIDE: 3840&#xA;[rawvideo @ 00000182dba72700] PACKET SIZE: 2764800, STRIDE: 3840&#xA;frame=    0 fps=0.0 q=0.0 size=       0kB time=N/A bitrate=N/A speed=N/A    &#xA;[rawvideo @ 00000182dba72700] PACKET SIZE: 2764800, STRIDE: 3840   &#xA;[rawvideo @ 00000182dba72700] PACKET SIZE: 2764800, STRIDE: 3840&#xA;[libx264 @ 00000182dba76080] frame=   0 QP=21.34 NAL=3 Slice:I Poc:0   I:3600 P:0    SKIP:0    size=135901 bytes&#xA;frame=    0 fps=0.0 q=25.0 size=       0kB time=-00:00:00.20 bitrate=  -0.0kbits/s speed=N/A    &#xA;[vost#0:0/libx264 @ 00000182dba75cc0] Error submitting a packet to the muxer: Broken pipe&#xA;[out#0/rtsp @ 00000182dba72c00] Error muxing a packet&#xA;[out#0/rtsp @ 00000182dba72c00] Terminating muxer thread&#xA;[rawvideo @ 00000182dba72700] PACKET SIZE: 2764800, STRIDE: 3840&#xA;[libx264 @ 00000182dba76080] frame=   1 QP=18.29 NAL=2 Slice:P Poc:2   I:2662 P:866  SKIP:72   size=54835 bytes&#xA;frame=    1 fps=0.0 q=25.0 size=N/A time=-00:00:00.10 bitrate=N/A speed=N/A    &#xA;No more output streams to write to, finishing.&#xA;&#xA;Conversion failed!&#xA;&#xA;

    &#xA;

  • Introducing Crash Analytics for Matomo

    30 août 2023, par Erin — Community, Plugins

    Bugs and development go hand in hand. As code matures, it contends with new browser iterations, clashes with ad blockers and other software quirks, resulting in the inevitable emergence of bugs. In fact, a staggering 13% of all pageviews come with lurking JavaScript errors.

    Monitoring for crashes becomes an unrelenting task. Amidst this never-ending effort to remove bugs, a SurveyMonkey study unveils a shared reality : a resounding 66% of individuals have encountered bug-ridden websites.

    These bugs lead to problems like malfunctioning shopping carts, glitchy checkout procedures and contact forms that just won’t cooperate. But they’re not just minor annoyances – they pose a real danger to your conversion rates and revenue.

    According to a study, 58% of visitors are inclined to abandon purchases as a result of bugs, while an astonishing 75% are driven to completely abandon websites due to these frustrating experiences.

    Imagine a website earning approximately 25,000 EUR per month. Now, factor in errors occurring in 13% of all pageviews. The result ? A potential monthly loss of 1,885 EUR.

    Meet Crash Analytics

    Driven by our vision to create an empowering analytics product, we’re excited to introduce Crash Analytics, an innovative plugin for Matomo On-Premise that automatically tracks bugs on your website.

    Crash Analytics for Matomo Evolution Graph
    View crash reports by evolution over time

    By offering insights into the precise bug location and the user’s interactions that triggered it, along with details about their device type, browser and more, Crash Analytics empowers you to swiftly address crashes, leading to an improved user experience, higher conversion rates and revenue growth.

    Soon, Crash Analytics will become available to Matomo Cloud users as well, so stay tuned for further updates and announcements.

    Say goodbye to lost revenue – never miss a bug again

    Even if you put your website through the toughest tests, it’s hard to predict every little hiccup that can pop up across different browsers, setups and situations. Factors such as ad blockers, varying internet speeds for visitors and browser updates can add an extra layer of complexity.

    When these crashes happen, you want to know immediately. However, according to a study, only 29% of surveyed respondents would report the existence of the site bug to the website operator. These bugs that go unnoticed can really hurt your bottom line and conversion rates, causing you to lose out on revenue and leaving your users frustrated and disappointed.

    Crash detail report in Crash Analytics for Matomo
    Detailed crash report

    Crash Analytics is here to bridge this gap. Armed with scheduled reporting (via email or texts) and automated alert functionalities, you gain the power to instantly detect bugs as they occur on your site. This proactive approach ensures that even the subtlest of issues are brought to your attention promptly. 

    With automated reports and alerts, you can also opt to receive notifications when crashes increase or ignore specific crashes that you deem insignificant. This keeps you in the loop with only the issues that truly matter, helping you cut out the noise and take immediate action.

    Forward crash data

    Easily forward crash data to developers and synchronise the efforts of technical teams and marketing experts. Track emerging, disappearing and recurring errors, ensuring that crash data is efficiently relayed to developers to prioritise fixes that matter.

    Eemerging, disappearing and recurring crashes in Crash Analytics for Matomo
    Track emerging, disappearing and recurring bugs

    Plus, your finger is always on the pulse with real-time reports that offer a live view of crashes happening at the moment, an especially helpful feature after deploying changes. Use annotations to mark deploys and correlate them with crash data, enabling you to quickly identify if a new bug is linked to recent updates or modifications.

    Crash data in real time
    Crash data in real time

    And with our mobile app, you can effortlessly stay connected to your website’s performance, conveniently accessing crash information anytime and anywhere. This ensures you’re in complete control of your site’s health, even when you’re on the move.

    Streamline bug resolution with combined web and crash analytics

    Crash Analytics for Matomo doesn’t just stop at pinpointing bug locations ; it goes a step further by providing you with a holistic perspective of user interactions. Seamlessly combining Matomo’s traditional and behavioural web analytics features—like segments, session recordings and visitor logs—with crash data, this integrated approach unveils a wealth of insights so you can quickly resolve bugs. 

    For instance, let’s say a user encounters a bug while attempting to complete a purchase on your e-commerce website. Crash Analytics reveals the exact point of failure, but to truly grasp the situation, you delve into the session recordings. These recordings offer a front-row seat to the user’s journey—every click and interaction that led to the bug. Session recordings are especially helpful when you are struggling to reproduce an issue.

    Visits log combined with crash data in Matomo
    Visits log overlayed with crash data

    Additionally, the combination of visitor logs with crash data offers a comprehensive timeline of a user’s engagement. This helps you understand their activity leading up to the bug, such as pages visited, actions taken and devices used. Armed with these multifaceted insights, you can confidently pinpoint the root causes and address the crash immediately.

    With segments, you have the ability to dissect the data and compare experiences among distinct user groups. For example, you can compare mobile visitors to desktop visitors to determine if the issue is isolated or widespread and what impact the issue is having on the user experience of different user groups. 

    The combination of crash data with Matomo’s comprehensive web analytics equips you with the tools needed to elevate user experiences and ultimately drive revenue growth.

    Start in seconds, shape as needed : Your path to a 100% reliable website

    Crash Analytics makes the path to a reliable website simple. You don’t have to deal with intricate setups—crash detection starts without any configuration. 

    Plus, Crash Analytics excels in cross-stack proficiency, seamlessly extending its capabilities beyond automatically tracking JavaScript errors to covering server-side crashes as well, whether they occur in PHP, Android, iOS, Java or other frameworks. This versatile approach ensures that Crash Analytics comprehensively supports your website’s health and performance across various technological landscapes.

    Elevate your website with Crash Analytics

    Experience the seamless convergence of bug tracking and web analytics, allowing you to delve into user interactions, session recordings and visitor logs. With the flexibility of customising real-time alerts and scheduled reports, alongside cross-stack proficiency, Crash Analytics becomes your trusted ally in enhancing your website’s reliability and user satisfaction to increase conversions and drive revenue growth. Equip yourself to swiftly address issues and create a website where user experiences take precedence.

    Start your 30-day free trial of our Crash Analytics plugin today, and stay tuned for its availability on Matomo Cloud.