
Recherche avancée
Médias (10)
-
Demon Seed
26 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
Demon seed (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
-
The four of us are dying (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
-
Corona radiata (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
-
Lights in the sky (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
-
Head down (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
Autres articles (40)
-
Publier sur MédiaSpip
13 juin 2013Puis-je poster des contenus à partir d’une tablette Ipad ?
Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir -
Les formats acceptés
28 janvier 2010, parLes commandes suivantes permettent d’avoir des informations sur les formats et codecs gérés par l’installation local de ffmpeg :
ffmpeg -codecs ffmpeg -formats
Les format videos acceptés en entrée
Cette liste est non exhaustive, elle met en exergue les principaux formats utilisés : h264 : H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 m4v : raw MPEG-4 video format flv : Flash Video (FLV) / Sorenson Spark / Sorenson H.263 Theora wmv :
Les formats vidéos de sortie possibles
Dans un premier temps on (...) -
Ajouter notes et légendes aux images
7 février 2011, parPour pouvoir ajouter notes et légendes aux images, la première étape est d’installer le plugin "Légendes".
Une fois le plugin activé, vous pouvez le configurer dans l’espace de configuration afin de modifier les droits de création / modification et de suppression des notes. Par défaut seuls les administrateurs du site peuvent ajouter des notes aux images.
Modification lors de l’ajout d’un média
Lors de l’ajout d’un média de type "image" un nouveau bouton apparait au dessus de la prévisualisation (...)
Sur d’autres sites (6956)
-
Lambda/ffmpeg timelapse generation - output zero bytes, can't debug ffmpeg
25 août 2021, par GoOutsideI am attempting to use an AWS Lambda FFMPEG layer to build a timelapse of static images in an S3 bucket. To begin, I am basing my project off of the tutorial located here.


I can replicate the steps in the tutorial, so I know the FFMPEG layer is working in Lambda. I have replicated the FFMPEG commands on a standalone server, so I know they are correct.


Here is my setup : I have two S3 buckets,
lambda-source-bucket
andlambda-destination-bucket
. The contents oflambda-source-bucket
are :

1.jpg
2.jpg
3.jpg
4.jpg
5.jpg
6.jpg
7.jpg
files.txt



The
files.txt
contains this :

file 'https://lambda-source-bucket.s3.us-west-2.amazonaws.com/1.jpg'
file 'https://lambda-source-bucket.s3.us-west-2.amazonaws.com/2.jpg'
file 'https://lambda-source-bucket.s3.us-west-2.amazonaws.com/3.jpg'
file 'https://lambda-source-bucket.s3.us-west-2.amazonaws.com/4.jpg'
file 'https://lambda-source-bucket.s3.us-west-2.amazonaws.com/5.jpg'
file 'https://lambda-source-bucket.s3.us-west-2.amazonaws.com/6.jpg'
file 'https://lambda-source-bucket.s3.us-west-2.amazonaws.com/7.jpg'



This is my Lambda function code (in Python) :


import json
import os
import subprocess
import shlex
import boto3

S3_DESTINATION_BUCKET = "lambda-destination-bucket"
SIGNED_URL_TIMEOUT = 60

def lambda_handler(event, context):

 s3_source_bucket = event['Records'][0]['s3']['bucket']['name']
 s3_source_key = event['Records'][0]['s3']['object']['key']

 s3_source_basename = os.path.splitext(os.path.basename(s3_source_key))[0]
 s3_destination_filename = "timelapse.mp4"

 s3_client = boto3.client('s3')
 s3_source_signed_url = s3_client.generate_presigned_url('get_object',
 Params={'Bucket': s3_source_bucket, 'Key': s3_source_key},
 ExpiresIn=SIGNED_URL_TIMEOUT)

 ffmpeg_cmd = "/opt/bin/ffmpeg -y -r 24 -f concat -safe 0 -protocol_whitelist file,http,tcp,https,tls -I ""https://lambda-source-bucket.s3.us-west-2.amazonaws.com/files.txt"" -c copy -s 1024x576 -vcodec libx264 -" 
command1 = shlex.split(ffmpeg_cmd)
 p1 = subprocess.run(command1, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

 resp = s3_client.put_object(Body=p1.stdout, Bucket=S3_DESTINATION_BUCKET, Key=s3_destination_filename)

 return {
 'statusCode': 200,
 'body': json.dumps('Processing complete successfully')
 }



The trigger for the Lambda function is when a new
files.txt
file is added tolambda-source-bucket
.

So far I have been able to get the trigger to fire, the function supposedly runs without errors (in Cloudwatch), and the function creates a new
timelapse.mp4
in thelambda-destination-bucket
. But this file is0 bytes
. I see no FFMPEG errors in the Cloudwatch console, though I am not sure I know how to configure my Lambda function code to log FFMPEG errors.

Also : if I'm going about this in a totally wrong way, I'd love to hear feedback. I'm guessing that the
concat
andfiles.txt
method of looping throughhttps://
is not the most efficient way to do this, but it's the only way I can figure this out so far.

Any help is most sincerely and humbly appreciated.


-
net core and video transcoding on aws lambda
14 septembre 2022, par user1765862I'm looking for a solution to :


- 

- upload video to s3 bucket
- after video upload an aws lambda function will be triggered
- lambda function will use ffmpeg layer in order to transcode video (mainly cropping with other functionalities)
- save result (transcoded video into s3 bucket)










My language of choice inside lambda is c# and net core runtime.


I have found various resources for video manipulation with aws ffmpeg layer using lambda function but no examples in net core lambda.


My question is :




Can I use existing FFmpeg/FFprobe Lambda Layer for Amazon Linux such
as this one with lambda function written in c# and .net core ?




Another question :




Would you suggest Amazon Elastic Transcoder as a better choice with
lambda function .net core integration ?




-
I tried to play the audio on Alexa skill from my S3 Bucket, from the test tab, **it show but in fact, I can't hear any sound
19 avril 2022, par Siti MaynaSo I tried to play the audio on Alexa skill from my S3 Bucket, from the test tab, it show but in fact, I can't hear any sound. Another fact is, that I tried to use the sample audio from https://developer.amazon.com/en-US/docs/alexa/custom-skills/ask-soundlibrary.html and it is worked, but why it won't work when it comes from my own S3 Bucket ?


Notes :


I've tried to test the skill using my mobile phone also.


I've tried to encode the audio using FFmpeg.


I've tried to use Jovo to convert the audio. https://v3.jovo.tech/audio-converter


I don't know how to fix this error.


There is no error message on cloud watch.


Assumptions :
There is some problem related to the audio resources or there is more set to play audio from S3 Bucket since the sample audio is working.


Steps to reproduce :




Build the interaction model






Encode the audio to make it Alexa skill friendly (fulfill the requirements, like sample rate, etc), I used and tried all of these :




A :


ffmpeg -i -ac 2 -codec:a libmp3lame -b:a 48k -ar 16000 -write_xing 0 



B :


ffmpeg -i -ac 2 -codec:a libmp3lame -b:a 48k -ar 24000 -write_xing 0 



C :


ffmpeg -y -i input.mp3 -ar 16000 -ab 48k -codec:a libmp3lame -ac 1 output.mp3





Upload the audio resources on S3Bucket
Audio sample on s3 storage but none of them are produce any sounds






Use the link and insert it to APLA.json





 {
 "type": "APLA",
 "version": "0.91",
 "description": "Simple document that generates speech",
 "mainTemplate": {
 "parameters": [
 "payload"
 ],
 "type": "Sequencer",
 "items": [
 {
 "type": "Audio",
 "source": "https://72578561-d9d8-47b4-811c-cafbcbc5ddb9-us-east-1.s3.amazonaws.com/Media/one-small-step-alexa-24.mp3"
 }
 ]
 }
 }




notes : I change the link sources based on audio that I tried.




the intent on lambda_function.py :




def _load_apl_document(file_path):
 # type: (str) -> Dict[str, Any]
 """Load the apl json document at the path into a dict object."""
 with open(file_path) as f:
 return json.load(f)

class LaunchRequestHandler(AbstractRequestHandler):
 """Handler for Skill Launch."""
 def can_handle(self, handler_input):
 # type: (HandlerInput) -> bool

 return ask_utils.is_request_type("LaunchRequest")(handler_input)

 def handle(self, handler_input):
 # type: (HandlerInput) -> Response
 logger.info("In LaunchRequestHandler")

 # type: (HandlerInput) -> Response
 speak_output = "Hello World!"
 # .ask("add a reprompt if you want to keep the session open for the user to respond")

 return (
 handler_input.response_builder
 #.speak(speak_output)
 .add_directive(
 RenderDocumentDirective(
 token="pagerToken",
 document=_load_apl_document("APLA.json"),
 datasources={}
 )
 )
 .response
 )





Deploy






Test it






The result of the test on my end :

The response for testing




the JSON response :


{
 "body": {
 "version": "1.0",
 "response": {
 "directives": [
 {
 "type": "Alexa.Presentation.APLA.RenderDocument",
 "token": "pagerToken",
 "document": {
 "type": "APLA",
 "version": "0.91",
 "description": "Simple document that generates speech",
 "mainTemplate": {
 "parameters": [
 "payload"
 ],
 "type": "Sequencer",
 "items": [
 {
 "type": "Audio",
 "source": "https://72578561-d9d8-47b4-811c-cafbcbc5ddb9-us-east-1.s3.amazonaws.com/Media/one-small-step-alexa-24.mp3"
 }
 ]
 }
 },
 "datasources": {}
 }
 ],
 "type": "_DEFAULT_RESPONSE"
 },
 "sessionAttributes": {},
 "userAgent": "ask-python/1.16.1 Python/3.7.12"
 }
}





On my cloud Watch :
Cloud Watch