Recherche avancée

Médias (0)

Mot : - Tags -/tags

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (67)

  • Le profil des utilisateurs

    12 avril 2011, par

    Chaque utilisateur dispose d’une page de profil lui permettant de modifier ses informations personnelle. Dans le menu de haut de page par défaut, un élément de menu est automatiquement créé à l’initialisation de MediaSPIP, visible uniquement si le visiteur est identifié sur le site.
    L’utilisateur a accès à la modification de profil depuis sa page auteur, un lien dans la navigation "Modifier votre profil" est (...)

  • Configurer la prise en compte des langues

    15 novembre 2010, par

    Accéder à la configuration et ajouter des langues prises en compte
    Afin de configurer la prise en compte de nouvelles langues, il est nécessaire de se rendre dans la partie "Administrer" du site.
    De là, dans le menu de navigation, vous pouvez accéder à une partie "Gestion des langues" permettant d’activer la prise en compte de nouvelles langues.
    Chaque nouvelle langue ajoutée reste désactivable tant qu’aucun objet n’est créé dans cette langue. Dans ce cas, elle devient grisée dans la configuration et (...)

  • XMP PHP

    13 mai 2011, par

    Dixit Wikipedia, XMP signifie :
    Extensible Metadata Platform ou XMP est un format de métadonnées basé sur XML utilisé dans les applications PDF, de photographie et de graphisme. Il a été lancé par Adobe Systems en avril 2001 en étant intégré à la version 5.0 d’Adobe Acrobat.
    Étant basé sur XML, il gère un ensemble de tags dynamiques pour l’utilisation dans le cadre du Web sémantique.
    XMP permet d’enregistrer sous forme d’un document XML des informations relatives à un fichier : titre, auteur, historique (...)

Sur d’autres sites (7438)

  • Cohort Analysis 101 : How-To, Examples & Top Tools

    13 novembre 2023, par Erin — Analytics Tips

    Imagine that a farmer is trying to figure out why certain hens are laying large brown eggs and others are laying average-sized white eggs.

    The farmer decides to group the hens into cohorts based on what kind of eggs they lay to make it easier to detect patterns in their day-to-day lives. After careful observation and analysis, she discovered that the hens laying big brown eggs ate more than the roost’s other hens.

    With this cohort analysis, the farmer deduced that a hen’s body weight directly corresponds to egg size. She can now develop a strategy to increase the body weight of her hens to sell more large brown eggs, which are very popular at the weekly farmers’ market.

    Cohort analysis has a myriad of applications in the world of web analytics. Like our farmer, you can use it to better understand user behaviour and reap the benefits of your efforts. This article will discuss the best practices for conducting an effective cohort analysis and compare the top cohort analysis tools for 2024. 

    What is cohort analysis ?

    By definition, cohort analysis refers to a technique where users are grouped based on shared characteristics or behaviours and then examined over a specified period.

    Think of it as a marketing superpower, enabling you to comprehend user behaviours, craft personalised campaigns and allocate resources wisely, ultimately resulting in improved performance and better ROI.

    Why does cohort analysis matter ?

    In web analytics, a cohort is a group of users who share a certain behaviour or characteristic. The goal of cohort analysis is to uncover patterns and compare the performance and behaviour of different cohorts over time.

    An example of a cohort is a group of users who made their first purchase during the holidays. By analysing this cohort, you could learn more about their behaviour and buying patterns. You may discover that this cohort is more likely to buy specific product categories as holiday gifts — you can then tailor future holiday marketing campaigns to include these categories. 

    Types of cohort analysis

    There are a few different types of notable cohorts : 

    1. Time-based cohorts are groups of users categorised by a specific time. The example of the farmer we went over at the beginning of this section is a great example of a time-based cohort.
    2. Acquisition cohorts are users acquired during a specific time frame, event or marketing channel. Analysing these cohorts can help you determine the value of different acquisition methods. 
    3. Behavioural cohorts consist of users who show similar patterns of behaviour. Examples include frequent purchases with your mobile app or digital content engagement. 
    4. Demographic cohorts share common demographic characteristics like age, gender, education level and income. 
    5. Churn cohorts are buyers who have cancelled a subscription/stopped using your service within a specific time frame. Analysing churn cohorts can help you understand why customers leave.
    6. Geographic cohorts are pretty self-explanatory — you can use them to tailor your marketing efforts to specific regions. 
    7. Customer journey cohorts are based on the buyer lifecycle — from acquisition to adoption to retention. 
    8. Product usage cohorts are buyers who use your product/service specifically (think basic users, power users or occasional users). 

    Best practices for conducting a cohort analysis 

    So, you’ve decided you want to understand your user base better but don’t know how to go about it. Perhaps you want to reduce churn and create a more engaging user experience. In this section, we’ll walk you through the dos and don’ts of conducting an effective cohort analysis. Remember that you should tailor your cohort analysis strategy for organisation-specific goals.

    A line graph depicting product usage cohort data with a blue line for new users and a green line for power users.

    1. Preparing for cohort analysis : 

      • First, define specific goals you want your cohort analysis to achieve. Examples include improving conversion rates or reducing churn.
      • Choosing the right time frame will help you compare short-term vs. long-term data trends. 

    2. Creating effective cohorts : 

      • Define your segmentation criteria — anything from demographics to location, purchase history or user engagement level. Narrowing in on your specific segments will make your cohort analysis more precise. 
      • It’s important to find a balance between cohort size and similarity. If your cohort is too small and diverse, you won’t be able to find specific behavioural patterns.

    3. Performing cohort analysis :

        • Study retention rates across cohorts to identify patterns in user behaviour and engagement over time. Pay special attention to cohorts with high retention or churn rates. 
        • Analysing cohorts can reveal interesting behavioural insights — how do specific cohorts interact with your website ? Do they have certain preferences ? Why ? 

    4. Visualising and interpreting data :

      • Visualising your findings can be a great way to reveal patterns. Line charts can help you spot trends, while bar charts can help you compare cohorts.
      • Guide your analytics team on how to interpret patterns in cohort data. Watch for sudden drops or spikes and what they could mean. 

    5. Continue improving :

      • User behaviour is constantly evolving, so be adaptable. Continuous tracking of user behaviour will help keep your strategies up to date. 
      • Encourage iterative analysis optimisation based on your findings. 
    wrench trying to hammer in a nail, and a hammer trying to screw in a screw to a piece of wood

    The top cohort analysis tools for 2024

    In this section, we’ll go over the best cohort analysis tools for 2024, including their key features, cohort analysis dashboards, cost and pros and cons.

    1. Matomo

    A screenshot of a cohorts graph in Matomo

    Matomo is an open-source, GDPR-compliant web analytics solution that offers cohort analysis as a standard feature in Matomo Cloud and is available as a plugin for Matomo On-Premise. Pairing traditional web analytics with cohort analysis will help you gain even deeper insights into understanding user behaviour over time. 

    You can use the data you get from web analytics to identify patterns in user behaviour and target your marketing strategies to specific cohorts. 

    Key features

    • Matomo offers a cohorts table that lets you compare cohorts side-by-side, and it comes with a time series.
      • All core session and conversion metrics are also available in the Cohorts report.
    • Create custom segments based on demographics, geography, referral sources, acquisition date, device types or user behaviour. 
    • Matomo provides retention analysis so you can track how many users from a specific cohort return to your website and when. 
    • Flexibly analyse your cohorts with custom reports. Customise your reports by combining metrics and dimensions specific to different cohorts. 
    • Create cohorts based on events or interactions with your website. 
    • Intuitive, colour-coded data visualisation, so you can easily spot patterns.

    Pros

    • No setup is needed if you use the JavaScript tracker
    • You can fetch cohort without any limit
    • 100% accurate data, no AI or Machine Learning data filling, and without the use of data sampling

    Cons

    • Matomo On-Premise (self-hosted) is free, but advanced features come with additional charges
    • Servers and technical know-how are required for Matomo On-Premise. Alternatively, for those not ready for self-hosting, Matomo Cloud presents a more accessible option and starts at $19 per month.

    Price : 

    • Matomo Cloud : 21-day free trial, then starts at $19 per month (includes Cohorts).
    • Matomo On-Premise : Free to self-host ; Cohorts plugin : 30-day free trial, then $99 per year.

    2. Mixpanel

    Mixpanel is a product analytics tool designed to help teams better understand user behaviour. It is especially well-suited for analysing user behaviour on iOS and Android apps. It offers various cohort analytics features that can be used to identify patterns and engage your users. 

    Key features

    • Create cohorts based on criteria such as sign-up date, first purchase date, referral source, geographic location, device type or another custom event/property. 
    • Compare how different cohorts engage with your app with Mixpanel’s comparative analysis features.
    • Create interactive dashboards, charts and graphs to visualise data.
    • Mixpanel provides retention analysis tools to see how often users return to your product over time. 
    • Send targeted messages and notifications to specific cohorts to encourage user engagement, announce new features, etc. 
    • Track and analyse user behaviours within cohorts — understand how different types of users engage with your product.

    Pros

    • Easily export cohort analysis data for further analysis
    • Combined with Mixpanel reports, cohorts can be a powerful tool for improving your product

    Cons

    • With the free Mixpanel plan, you can’t save cohorts for future use
    • Enterprise-level pricing is expensive
    • Time-consuming cohort creation process

    Price : Free basic version. The growth version starts at £16/month.

    3. Amplitude

    A screenshot of a cohorts graph in Amplitude

    Amplitude is another product analytics solution that can help businesses track user interactions across digital platforms. Amplitude offers a standard toolkit for in-depth cohort analysis.

    Key features

    • Create cohorts based on criteria such as sign-up date, first purchase date, referral source, geographic location, device type or another custom event/property. 
    • Conduct behavioural, time-based and retention analyses.
    • Create custom reports with custom data.
    • Segment cohorts further based on additional criteria and compare multiple cohorts side-by-side.

    Pros

    • Highly customisable and flexible
    • Quick and simple setup

    Cons

    • Steep learning curve — requires significant training 
    • Slow loading speed
    • High price point compared to other tools

    Price : Free basic version. Plus version starts at £40/month (billed annually).

    4. Kissmetrics

    A screenshot of a cohorts graph in Kissmetrics

    Kissmetrics is a customer engagement automation platform that offers powerful analytics features. Kissmetrics provides behavioural analytics, segmentation and email campaign automation. 

    Key features

    • Create cohorts based on demographics, user behaviour, referral sources, events and specific time frames.
    • The user path tool provides path visualisation so you can identify common paths users take and spot abandonment points. 
    • Create and optimise conversion funnels.
    • Customise events, user properties, funnels, segments, cohorts and more.

    Pros

    • Powerful data visualisation options
    • Highly customisable

    Cons

    • Difficult to install
    • Not well-suited for small businesses
    • Limited integration with other tools

    Price : Starting at £21/month for 10k events (billed monthly).

    Improve your cohort analysis with Matomo

    When choosing a cohort analysis tool, consider factors such as the tool’s ease of integration with your existing systems, data accuracy, the flexibility it offers in defining cohorts, the comprehensiveness of reporting features, and its scalability to accommodate the growth of your data and analysis needs over time. Moreover, it’s essential to confirm GDPR compliance to uphold rigorous privacy standards. 

    If you’re ready to understand your user’s behaviour, take Matomo for a test drive. Paired with web analytics, this powerful combination can advance your marketing efforts. Start your 21-day free trial today — no credit card required.

  • Segmentation Analytics : How to Leverage It on Your Site

    27 octobre 2023, par Erin — Analytics Tips

    The deeper you go with your customer analytics, the better your insights will be.

    The result ? Your marketing performance soars to new heights.

    Customer segmentation is one of the best ways businesses can align their marketing strategies with an effective output to generate better results. Marketers know that targeting the right people is one of the most important aspects of connecting with and converting web visitors into customers.

    By diving into customer segmentation analytics, you’ll be able to transform your loosely defined and abstract audience into tangible, understandable segments, so you can serve them better.

    In this guide, we’ll break down customer segmentation analytics, the different types, and how you can delve into these analytics on your website to grow your business.

    What is customer segmentation ?

    Before we dive into customer segmentation analytics, let’s take a step back and look at customer segmentation in general. 

    Customer segmentation is the process of dividing your customers up into different groups based on specific characteristics.

    These groups could be based on demographics like age or location or behaviours like recent purchases or website visits. 

    By splitting your audience into different segments, your marketing team will be able to craft highly targeted and relevant marketing campaigns that are more likely to convert.

    Additionally, customer segmentation allows businesses to gain new insights into their audience. For example, by diving deep into different segments, marketers can uncover pain points and desires, leading to increased conversion rates and return on investment.

    But, to grasp the different customer segments, organisations need to know how to collect, digest and interpret the data for usable insights to improve their business. That’s where segmentation analytics comes in.

    What is customer segmentation analytics ?

    Customer segmentation analytics splits customers into different groups within your analytics software to create more detailed customer data and improve targeting.

    What is segmentation analytics?

    With customer segmentation, you’re splitting your customers into different groups. With customer segmentation analytics, you’re doing this all within your analytics platform so you can understand them better.

    One example of splitting your customers up is by country. For example, let’s say you have a global customer base. So, you go into your analytics software and find that 90% of your website visitors come from five countries : the UK, the US, Australia, Germany and Japan.

    In this area, you could then create customer segmentation subsets based on these five countries. Moving forward, you could then hop into your analytics tool at any point in time and analyse the segments by country. 

    For example, if you wanted to see how well your recent marketing campaign impacted your Japanese customers, you could look at your Japanese subset within your analytics and dive into the data.

    The primary goal of customer segmentation analytics is to gather actionable data points to give you an in-depth understanding of your customers. By gathering data on your different audience segments, you’ll discover insights on your customers that you can use to optimise your website, marketing campaigns, mobile apps, product offerings and overall customer experience.

    Rather than lumping your entire customer base into a single mass, customer segmentation analytics allows you to meet even more specific and relevant needs and pain points of your customers to serve them better.

    By allowing you to “zoom in” on your audience, segmentation analytics helps you offer more value to your customers, giving you a competitive advantage in the marketplace.

    5 types of segmentation

    There are dozens of different ways to split up your customers into segments. The one you choose depends on your goals and marketing efforts. Each type of segmentation offers a different view of your customers so you can better understand their specific needs to reach them more effectively.

    While you can segment your customers in almost endless ways, five common types the majority fall under are :

    5 Types of Segmentation

    Geographic

    Another way to segment is by geography.

    This is important because you could have drastically different interests, pain points and desires based on where you live.

    If you’re running a global e-commerce website that sells a variety of clothing products, geographic segmentation can play a crucial role in optimising your website.

    For instance, you may observe that a significant portion of your website visitors are from countries in the Southern Hemisphere, where it’s currently summer. On the other hand, visitors from the Northern Hemisphere are experiencing winter. Utilising this information, you can tailor your marketing strategy and website accordingly to increase sells.

    Where someone comes from can significantly impact how they will respond to your messaging, brand and offer.

    Geographic segmentation typically includes the following subtypes :

    • Cities (i.e., Austin, Paris, Berlin, etc.)
    • State (i.e., Massachusetts)
    • Country (i.e., Thailand)

    Psychographic

    Another key segmentation type of psychographic. This is where you split your customers into different groups based on their lifestyles.

    Psychographic segmentation is a method of dividing your customers based on their habits, attitudes, values and opinions. You can unlock key emotional elements that impact your customers’ purchasing behaviours through this segmentation type.

    Psychographic segmentation typically includes the following subtypes :

    • Values
    • Habits
    • Opinions

    Behavioural

    While psychographic segmentation looks at your customers’ overall lifestyle and habits, behavioural segmentation aims to dive into the specific individual actions they take daily, especially when interacting with your brand or your website.

    Your customers won’t all interact with your brand the same way. They’ll act differently when interacting with your products and services for several reasons. 

    Behavioural segmentation can help reveal certain use cases, like why customers buy a certain product, how often they buy it, where they buy it and how they use it.

    By unpacking these key details about your audience’s behaviour, you can optimise your campaigns and messaging to get the most out of your marketing efforts to reach new and existing customers.

    Behavioural segmentation typically includes the following subtypes :

    • Interactions
    • Interests
    • Desires

    Technographic

    Another common segmentation type is technographic segmentation. As the name suggests, this technologically driven segment seeks to understand how your customers use technology.

    While this is one of the newest segmentation types marketers use, it’s a powerful method to help you understand the types of tech your customers use, how often they use it and the specific ways they use it.

    Technographic segmentation typically includes the following subtypes :

    • Smartphone type
    • Device type : smartphone, desktop, tablet
    • Apps
    • Video games

    Demographic

    The most common approach to segmentation is to split your customers up by demographics. 

    Demographic segmentation typically includes subtypes like language, job title, age or education.

    This can be helpful for tailoring your content, products, and marketing efforts to specific audience segments. One way to capture this information is by using web analytics tools, where language is often available as a data point.

    However, for accurate insights into other demographic segments like job titles, which may not be available (or accurate) in analytics tools, you may need to implement surveys or add fields to forms on your website to gather this specific information directly from your visitors.

    How to build website segmentation analytics

    With Matomo, you can create a variety of segments to divide your website visitors into different groups. Matomo’s Segments allows you to view segmentation analytics on subsets of your audience, like :

    • The device they used while visiting your site
    • What channel they entered your site from
    • What country they are located
    • Whether or not they visited a key page of your website
    • And more

    While it’s important to collect general data on every visitor you have to your website, a key to website growth is understanding each type of visitor you have.

    For example, here’s a screenshot of how you can segment all of your website’s visitors from New Zealand :

    Matomo Dashboard of Segmentation by Country

    The criteria you use to define these segments are based on the data collected within your web analytics platform.

    Here are some popular ways you can create some common themes on Matomo that can be used to create segments :

    Visit based segments

    Create segments in Matomo based on visitors’ patterns. 

    For example :

    • Do returning visitors show different traits than first-time visitors ?
    • Do people who arrive on your blog experience your website differently than those arriving on a landing page ?

    This information can inform your content strategy, user interface design and marketing efforts.

    Demographic segments

    Create segments in Matomo based on people’s demographics. 

    For example :

    • User’s browser language
    • Location

    This can enable you to tailor your approach to specific demographics, improving the performance of your marketing campaigns.

    Technographic segments

    Create segments in Matomo based on people’s technographics. 

    For example :

    • Web browser being used (i.e., Chrome, Safari, Firefox, etc.)
    • Device type (i.e., smartphone, tablet, desktop)

    This can inform how to optimise your website based on users’ technology preferences, enhancing the effectiveness of your website.

    Interaction based segments

    Create segments in Matomo based on interactions. 

    For example :

    • Events (i.e., when someone clicks a specific URL on your website)
    • Goals (i.e., when someone stays on your site for a certain period)

    Insights from this can empower you to fine-tune your content and user experience for increasing conversion rates.

    Visitor Profile in Matomo
    Visitor profile view in Matomo with behavioural, location and technographic insights

    Campaign-based segments

    Create segments in Matomo based on campaigns. 

    For example :

    • Visitors arriving from specific traffic sources
    • Visitors arriving from specific advertising campaigns

    With these insights, you can assess the performance of your marketing efforts, optimise your ad spend and make data-driven decisions to enhance your campaigns for better results.

    Ecommerce segments

    Create segments in Matomo based on ecommerce

    For example :

    • Visitors who purchased vs. those who didn’t
    • Visitors who purchased a specific product

    This allows you to refine your website and marketing strategy for increased conversions and revenue.

    Leverage Matomo for your segmentation analytics

    By now, you can see the power of segmentation analytics and how they can be used to understand your customers and website visitors better. By breaking down your audience into groups, you’ll be able to gain insights into those segments to know how to serve them better with improved messaging and relevant products.

    If you’re ready to begin using segmentation analytics on your website, try Matomo. Start your 21-day free trial now — no credit card required.

    Matomo is an ideal choice for marketers looking for an easy-to-use, out-of-the-box web analytics solution that delivers accurate insights while keeping privacy and compliance at the forefront.

  • ffmpeg command to add moving text watermark to video [closed]

    13 octobre 2023, par Imran Khan
    

    

            // Constants for watermark movement, direction change intervals, fade intervals, and overlap duration
        const MOVE_SPEED = 3;
        const DIRECTION_CHANGE_MIN = 3000;
        const DIRECTION_CHANGE_MAX = 6000;
        const FADE_INTERVAL_MIN = 10000;
        const FADE_INTERVAL_MAX = 20000;
        const OVERLAP_DURATION = 2000;

        // Get references to the video container and watermarks
        const container = document.querySelector('.video-container');
        const watermark1 = document.getElementById('watermark1');
        const watermark2 = document.getElementById('watermark2');

        // Helper function to get a random integer between min and max (inclusive)
        function getRandomInt(min, max) {
            return Math.floor(Math.random() * (max - min + 1)) + min;
        }

        // Helper function to get a random direction (either 1 or -1)
        function getRandomDirection() {
            return Math.random() > 0.5 ? 1 : -1;
        }

        // Set the initial position of the watermark inside the video container
        function setInitialPosition(watermark) {
            const x = getRandomInt(0, container.offsetWidth - watermark.offsetWidth);
            const y = getRandomInt(0, container.offsetHeight - watermark.offsetHeight);
            watermark.style.left = `${x}px`;
            watermark.style.top = `${y}px`;
            watermark.style.opacity = 1;
        }

        // Function to handle continuous movement of the watermark
        function continuousMove(watermark) {
            let dx = getRandomDirection() * MOVE_SPEED;
            let dy = getRandomDirection() * MOVE_SPEED;

            // Inner function to handle the actual movement logic
            function move() {
                let x = parseInt(watermark.style.left || 0) + dx;
                let y = parseInt(watermark.style.top || 0) + dy;

                // Check boundaries and reverse direction if necessary
                if (x < 0 || x > container.offsetWidth - watermark.offsetWidth) {
                    dx = -dx;
                }
                if (y < 0 || y > container.offsetHeight - watermark.offsetHeight) {
                    dy = -dy;
                }

                // Apply the new position
                watermark.style.left = `${x}px`;
                watermark.style.top = `${y}px`;

                // Continue moving
                setTimeout(move, 100);
            }

            move();

            // Change direction at random intervals
            setInterval(() => {
                const randomChoice = Math.random();
                if (randomChoice < 0.33) {
                    dx = getRandomDirection() * MOVE_SPEED;
                    dy = 0;
                } else if (randomChoice < 0.66) {
                    dy = getRandomDirection() * MOVE_SPEED;
                    dx = 0;
                } else {
                    dx = getRandomDirection() * MOVE_SPEED;
                    dy = getRandomDirection() * MOVE_SPEED;
                }
            }, getRandomInt(DIRECTION_CHANGE_MIN, DIRECTION_CHANGE_MAX));
        }

        // Handle the fading out of the old watermark and fading in of the new watermark
        function fadeOutAndIn(oldWatermark, newWatermark) {
            setTimeout(() => {
                setInitialPosition(newWatermark);
                newWatermark.style.opacity = 1;
            }, 0);

            setTimeout(() => {
                oldWatermark.style.opacity = 0;
            }, OVERLAP_DURATION);

            // Continue the cycle
            setTimeout(() => fadeOutAndIn(newWatermark, oldWatermark), getRandomInt(FADE_INTERVAL_MIN, FADE_INTERVAL_MAX));
        }

        // Initialize the watermarks
        setInitialPosition(watermark1);
        continuousMove(watermark1);
        setTimeout(() => fadeOutAndIn(watermark1, watermark2), getRandomInt(FADE_INTERVAL_MIN, FADE_INTERVAL_MAX));
        continuousMove(watermark2);
    

    


    body, html {
            height: 100%;
            margin: 0;
            font-family: Arial, sans-serif;
            display: flex;
            justify-content: center;
            align-items: center;
            background-color: #eee;
        }

        .video-container {
            width: 50vw;
            height: 50vh;
            background-color: black;
            position: relative;
            overflow: hidden;
        }

        .watermark {
            font-size: 22px;
            position: absolute;
            color: white;
            opacity: 0;
            transition: opacity 2s;
        }

    


    &#xA;&#xA;&#xA;    &#xA;    &#xA;    &#xA;&#xA;&#xA;    <div class="video-container">&#xA;        <span class="watermark">watermark</span>&#xA;        <span class="watermark">watermark</span>&#xA;    </div>&#xA;    &#xA;&#xA;

    &#xD;&#xA;

    &#xD;&#xA;

    &#xD;&#xA;&#xA;

    I am trying to achieve an animation effect using ffmpeg. I am adding text watermark to an input video and animate the text diagonally, horizontally or vertically changed randomly. Here is what I have achieved so far.

    &#xA;

    ffmpeg -i video.mp4 -c:v libx264 -preset veryfast -crf 25 -tune zerolatency -vendor ap10 -pix_fmt yuv420p -filter:v "drawtext=fontfile=./fonts/Roboto/Roboto-Light.ttf:text=&#x27;Watermark&#x27;:fontcolor=white:alpha=0.5:fontsize=60:y=h/10*mod(t\,10):x=w/10*mod(t\,10):enable=1" -c:a copy watermark.mp4

    &#xA;

    Here is what I want it to work.

    &#xA;

    Initial Position :&#xA;The watermark randomly placed in the video the first time they appear.

    &#xA;

    Continuous Movement :&#xA;The watermark continuously moves within the video.&#xA;The direction and speed of the watermark's movement are random. It can move diagonally, purely horizontally, or purely vertically.&#xA;When the watermark reaches the boundaries of the video, it bounces back, changing its direction.

    &#xA;

    Direction Change :&#xA;During its continuous movement, the watermark will suddenly change its direction at random intervals between 3 to 6 seconds.&#xA;When changing direction, the watermark can randomly determined move diagonally, purely horizontally, or purely vertically.

    &#xA;

    Fade In and Out :&#xA;Every 10 to 20 seconds (randomly determined), the current watermark begins to fade out.&#xA;As the old watermark starts to fade out, a new watermark fades in at a random position, ensuring that there's always a visible watermark on the screen.&#xA;These two watermarks (the fading old one and the emerging new one) overlap on the screen for a duration of 2 seconds, after which the old watermark completely disappears.&#xA;These patterns and characteristics together provide a dynamic, constantly moving, and changing watermark for the video

    &#xA;

    To achieve the result I think we can use the drawtext multiple times. I have attached the HTML and JavaScript variant just for the reference to understand the result but I am trying to do this using ffmpeg.

    &#xA;