Recherche avancée

Médias (91)

Autres articles (61)

  • Gestion des droits de création et d’édition des objets

    8 février 2011, par

    Par défaut, beaucoup de fonctionnalités sont limitées aux administrateurs mais restent configurables indépendamment pour modifier leur statut minimal d’utilisation notamment : la rédaction de contenus sur le site modifiables dans la gestion des templates de formulaires ; l’ajout de notes aux articles ; l’ajout de légendes et d’annotations sur les images ;

  • Supporting all media types

    13 avril 2011, par

    Unlike most software and media-sharing platforms, MediaSPIP aims to manage as many different media types as possible. The following are just a few examples from an ever-expanding list of supported formats : images : png, gif, jpg, bmp and more audio : MP3, Ogg, Wav and more video : AVI, MP4, OGV, mpg, mov, wmv and more text, code and other data : OpenOffice, Microsoft Office (Word, PowerPoint, Excel), web (html, CSS), LaTeX, Google Earth and (...)

  • Dépôt de média et thèmes par FTP

    31 mai 2013, par

    L’outil MédiaSPIP traite aussi les média transférés par la voie FTP. Si vous préférez déposer par cette voie, récupérez les identifiants d’accès vers votre site MédiaSPIP et utilisez votre client FTP favori.
    Vous trouverez dès le départ les dossiers suivants dans votre espace FTP : config/ : dossier de configuration du site IMG/ : dossier des média déjà traités et en ligne sur le site local/ : répertoire cache du site web themes/ : les thèmes ou les feuilles de style personnalisées tmp/ : dossier de travail (...)

Sur d’autres sites (9050)

  • swscale/x86/input.asm : add x86-optimized planer rgb2yuv functions

    24 novembre 2021, par Mark Reid
    swscale/x86/input.asm : add x86-optimized planer rgb2yuv functions
    

    sse2 only operates on 2 lanes per loop for to_y and to_uv functions, due
    to the lack of pmulld instruction. Emulating pmulld with 2 pmuludq and shuffles
    proved too costly and made to_uv functions slower then the c implementation.

    For to_y on sse2 only float functions are generated,
    I was are not able outperform the c implementation on the integer pixel formats.

    For to_a on see4 only the float functions are generated.
    sse2 and sse4 generated nearly identical performing code on integer pixel formats,
    so only sse2/avx2 versions are generated.

    planar_gbrp_to_y_512_c : 1197.5
    planar_gbrp_to_y_512_sse4 : 444.5
    planar_gbrp_to_y_512_avx2 : 287.5
    planar_gbrap_to_y_512_c : 1204.5
    planar_gbrap_to_y_512_sse4 : 447.5
    planar_gbrap_to_y_512_avx2 : 289.5
    planar_gbrp9be_to_y_512_c : 1380.0
    planar_gbrp9be_to_y_512_sse4 : 543.5
    planar_gbrp9be_to_y_512_avx2 : 340.0
    planar_gbrp9le_to_y_512_c : 1200.5
    planar_gbrp9le_to_y_512_sse4 : 442.0
    planar_gbrp9le_to_y_512_avx2 : 282.0
    planar_gbrp10be_to_y_512_c : 1378.5
    planar_gbrp10be_to_y_512_sse4 : 544.0
    planar_gbrp10be_to_y_512_avx2 : 337.5
    planar_gbrp10le_to_y_512_c : 1200.0
    planar_gbrp10le_to_y_512_sse4 : 448.0
    planar_gbrp10le_to_y_512_avx2 : 285.5
    planar_gbrap10be_to_y_512_c : 1380.0
    planar_gbrap10be_to_y_512_sse4 : 542.0
    planar_gbrap10be_to_y_512_avx2 : 340.5
    planar_gbrap10le_to_y_512_c : 1199.0
    planar_gbrap10le_to_y_512_sse4 : 446.0
    planar_gbrap10le_to_y_512_avx2 : 289.5
    planar_gbrp12be_to_y_512_c : 10563.0
    planar_gbrp12be_to_y_512_sse4 : 542.5
    planar_gbrp12be_to_y_512_avx2 : 339.0
    planar_gbrp12le_to_y_512_c : 1201.0
    planar_gbrp12le_to_y_512_sse4 : 440.5
    planar_gbrp12le_to_y_512_avx2 : 286.0
    planar_gbrap12be_to_y_512_c : 1701.5
    planar_gbrap12be_to_y_512_sse4 : 917.0
    planar_gbrap12be_to_y_512_avx2 : 338.5
    planar_gbrap12le_to_y_512_c : 1201.0
    planar_gbrap12le_to_y_512_sse4 : 444.5
    planar_gbrap12le_to_y_512_avx2 : 288.0
    planar_gbrp14be_to_y_512_c : 1370.5
    planar_gbrp14be_to_y_512_sse4 : 545.0
    planar_gbrp14be_to_y_512_avx2 : 338.5
    planar_gbrp14le_to_y_512_c : 1199.0
    planar_gbrp14le_to_y_512_sse4 : 444.0
    planar_gbrp14le_to_y_512_avx2 : 279.5
    planar_gbrp16be_to_y_512_c : 1364.0
    planar_gbrp16be_to_y_512_sse4 : 544.5
    planar_gbrp16be_to_y_512_avx2 : 339.5
    planar_gbrp16le_to_y_512_c : 1201.0
    planar_gbrp16le_to_y_512_sse4 : 445.5
    planar_gbrp16le_to_y_512_avx2 : 280.5
    planar_gbrap16be_to_y_512_c : 1377.0
    planar_gbrap16be_to_y_512_sse4 : 545.0
    planar_gbrap16be_to_y_512_avx2 : 338.5
    planar_gbrap16le_to_y_512_c : 1201.0
    planar_gbrap16le_to_y_512_sse4 : 442.0
    planar_gbrap16le_to_y_512_avx2 : 279.0
    planar_gbrpf32be_to_y_512_c : 4113.0
    planar_gbrpf32be_to_y_512_sse2 : 2438.0
    planar_gbrpf32be_to_y_512_sse4 : 1068.0
    planar_gbrpf32be_to_y_512_avx2 : 904.5
    planar_gbrpf32le_to_y_512_c : 3818.5
    planar_gbrpf32le_to_y_512_sse2 : 2024.5
    planar_gbrpf32le_to_y_512_sse4 : 1241.5
    planar_gbrpf32le_to_y_512_avx2 : 657.0
    planar_gbrapf32be_to_y_512_c : 3707.0
    planar_gbrapf32be_to_y_512_sse2 : 2444.0
    planar_gbrapf32be_to_y_512_sse4 : 1077.0
    planar_gbrapf32be_to_y_512_avx2 : 909.0
    planar_gbrapf32le_to_y_512_c : 3822.0
    planar_gbrapf32le_to_y_512_sse2 : 2024.5
    planar_gbrapf32le_to_y_512_sse4 : 1176.0
    planar_gbrapf32le_to_y_512_avx2 : 658.5

    planar_gbrp_to_uv_512_c : 2325.8
    planar_gbrp_to_uv_512_sse2 : 1726.8
    planar_gbrp_to_uv_512_sse4 : 771.8
    planar_gbrp_to_uv_512_avx2 : 506.8
    planar_gbrap_to_uv_512_c : 2281.8
    planar_gbrap_to_uv_512_sse2 : 1726.3
    planar_gbrap_to_uv_512_sse4 : 768.3
    planar_gbrap_to_uv_512_avx2 : 496.3
    planar_gbrp9be_to_uv_512_c : 2336.8
    planar_gbrp9be_to_uv_512_sse2 : 1924.8
    planar_gbrp9be_to_uv_512_sse4 : 852.3
    planar_gbrp9be_to_uv_512_avx2 : 552.8
    planar_gbrp9le_to_uv_512_c : 2270.3
    planar_gbrp9le_to_uv_512_sse2 : 1512.3
    planar_gbrp9le_to_uv_512_sse4 : 764.3
    planar_gbrp9le_to_uv_512_avx2 : 491.3
    planar_gbrp10be_to_uv_512_c : 2281.8
    planar_gbrp10be_to_uv_512_sse2 : 1917.8
    planar_gbrp10be_to_uv_512_sse4 : 855.3
    planar_gbrp10be_to_uv_512_avx2 : 541.3
    planar_gbrp10le_to_uv_512_c : 2269.8
    planar_gbrp10le_to_uv_512_sse2 : 1515.3
    planar_gbrp10le_to_uv_512_sse4 : 759.8
    planar_gbrp10le_to_uv_512_avx2 : 487.8
    planar_gbrap10be_to_uv_512_c : 2382.3
    planar_gbrap10be_to_uv_512_sse2 : 1924.8
    planar_gbrap10be_to_uv_512_sse4 : 855.3
    planar_gbrap10be_to_uv_512_avx2 : 540.8
    planar_gbrap10le_to_uv_512_c : 2382.3
    planar_gbrap10le_to_uv_512_sse2 : 1512.3
    planar_gbrap10le_to_uv_512_sse4 : 759.3
    planar_gbrap10le_to_uv_512_avx2 : 484.8
    planar_gbrp12be_to_uv_512_c : 2283.8
    planar_gbrp12be_to_uv_512_sse2 : 1936.8
    planar_gbrp12be_to_uv_512_sse4 : 858.3
    planar_gbrp12be_to_uv_512_avx2 : 541.3
    planar_gbrp12le_to_uv_512_c : 2278.8
    planar_gbrp12le_to_uv_512_sse2 : 1507.3
    planar_gbrp12le_to_uv_512_sse4 : 760.3
    planar_gbrp12le_to_uv_512_avx2 : 485.8
    planar_gbrap12be_to_uv_512_c : 2385.3
    planar_gbrap12be_to_uv_512_sse2 : 1927.8
    planar_gbrap12be_to_uv_512_sse4 : 855.3
    planar_gbrap12be_to_uv_512_avx2 : 539.8
    planar_gbrap12le_to_uv_512_c : 2377.3
    planar_gbrap12le_to_uv_512_sse2 : 1516.3
    planar_gbrap12le_to_uv_512_sse4 : 759.3
    planar_gbrap12le_to_uv_512_avx2 : 484.8
    planar_gbrp14be_to_uv_512_c : 2283.8
    planar_gbrp14be_to_uv_512_sse2 : 1935.3
    planar_gbrp14be_to_uv_512_sse4 : 852.3
    planar_gbrp14be_to_uv_512_avx2 : 540.3
    planar_gbrp14le_to_uv_512_c : 2276.8
    planar_gbrp14le_to_uv_512_sse2 : 1514.8
    planar_gbrp14le_to_uv_512_sse4 : 762.3
    planar_gbrp14le_to_uv_512_avx2 : 484.8
    planar_gbrp16be_to_uv_512_c : 2383.3
    planar_gbrp16be_to_uv_512_sse2 : 1881.8
    planar_gbrp16be_to_uv_512_sse4 : 852.3
    planar_gbrp16be_to_uv_512_avx2 : 541.8
    planar_gbrp16le_to_uv_512_c : 2378.3
    planar_gbrp16le_to_uv_512_sse2 : 1476.8
    planar_gbrp16le_to_uv_512_sse4 : 765.3
    planar_gbrp16le_to_uv_512_avx2 : 485.8
    planar_gbrap16be_to_uv_512_c : 2382.3
    planar_gbrap16be_to_uv_512_sse2 : 1886.3
    planar_gbrap16be_to_uv_512_sse4 : 853.8
    planar_gbrap16be_to_uv_512_avx2 : 550.8
    planar_gbrap16le_to_uv_512_c : 2381.8
    planar_gbrap16le_to_uv_512_sse2 : 1488.3
    planar_gbrap16le_to_uv_512_sse4 : 765.3
    planar_gbrap16le_to_uv_512_avx2 : 491.8
    planar_gbrpf32be_to_uv_512_c : 4863.0
    planar_gbrpf32be_to_uv_512_sse2 : 3347.5
    planar_gbrpf32be_to_uv_512_sse4 : 1800.0
    planar_gbrpf32be_to_uv_512_avx2 : 1199.0
    planar_gbrpf32le_to_uv_512_c : 4725.0
    planar_gbrpf32le_to_uv_512_sse2 : 2753.0
    planar_gbrpf32le_to_uv_512_sse4 : 1474.5
    planar_gbrpf32le_to_uv_512_avx2 : 927.5
    planar_gbrapf32be_to_uv_512_c : 4859.0
    planar_gbrapf32be_to_uv_512_sse2 : 3269.0
    planar_gbrapf32be_to_uv_512_sse4 : 1802.0
    planar_gbrapf32be_to_uv_512_avx2 : 1201.5
    planar_gbrapf32le_to_uv_512_c : 6338.0
    planar_gbrapf32le_to_uv_512_sse2 : 2756.5
    planar_gbrapf32le_to_uv_512_sse4 : 1476.0
    planar_gbrapf32le_to_uv_512_avx2 : 908.5

    planar_gbrap_to_a_512_c : 383.3
    planar_gbrap_to_a_512_sse2 : 66.8
    planar_gbrap_to_a_512_avx2 : 43.8
    planar_gbrap10be_to_a_512_c : 601.8
    planar_gbrap10be_to_a_512_sse2 : 86.3
    planar_gbrap10be_to_a_512_avx2 : 34.8
    planar_gbrap10le_to_a_512_c : 602.3
    planar_gbrap10le_to_a_512_sse2 : 48.8
    planar_gbrap10le_to_a_512_avx2 : 31.3
    planar_gbrap12be_to_a_512_c : 601.8
    planar_gbrap12be_to_a_512_sse2 : 111.8
    planar_gbrap12be_to_a_512_avx2 : 41.3
    planar_gbrap12le_to_a_512_c : 385.8
    planar_gbrap12le_to_a_512_sse2 : 75.3
    planar_gbrap12le_to_a_512_avx2 : 39.8
    planar_gbrap16be_to_a_512_c : 386.8
    planar_gbrap16be_to_a_512_sse2 : 79.8
    planar_gbrap16be_to_a_512_avx2 : 31.3
    planar_gbrap16le_to_a_512_c : 600.3
    planar_gbrap16le_to_a_512_sse2 : 40.3
    planar_gbrap16le_to_a_512_avx2 : 30.3
    planar_gbrapf32be_to_a_512_c : 1148.8
    planar_gbrapf32be_to_a_512_sse2 : 611.3
    planar_gbrapf32be_to_a_512_sse4 : 234.8
    planar_gbrapf32be_to_a_512_avx2 : 183.3
    planar_gbrapf32le_to_a_512_c : 851.3
    planar_gbrapf32le_to_a_512_sse2 : 263.3
    planar_gbrapf32le_to_a_512_sse4 : 199.3
    planar_gbrapf32le_to_a_512_avx2 : 156.8

    Reviewed-by : Paul B Mahol <onemda@gmail.com>
    Signed-off-by : James Almer <jamrial@gmail.com>

    • [DH] libswscale/x86/input.asm
    • [DH] libswscale/x86/swscale.c
    • [DH] tests/checkasm/sw_gbrp.c
  • Marketing Cohort Analysis : How To Do It (With Examples)

    12 janvier 2024, par Erin

    The better you understand your customers, the more effective your marketing will become. 

    The good news is you don’t need to run expensive focus groups to learn much about how your customers behave. Instead, you can run a marketing cohort analysis using data from your website analytics.

    A marketing cohort groups your users by certain traits and allows you to drill down to discover why they take the actions on your website they do. 

    In this article, we’ll explain what a marketing cohort analysis is, show you what you can achieve with this analytical technique and provide a step-by-step guide to pulling it off. 

    What is cohort analysis in marketing ?

    A marketing cohort analysis is a form of behavioural analytics where you analyse the behavioural patterns of users who share a similar trait to better understand their actions. 

    These shared traits could be anything like the date they signed up for your product, users who bought your service through a paid ad or email subscribers from the United Kingdom.

    It’s a fantastic way to improve your marketing efforts, allowing you to better understand complex user behaviours, personalise campaigns accordingly and improve your ROI. 

    You can run marketing analysis using an analytics platform like Google Analytics or Matomo. With these platforms, you can measure how cohorts perform using traffic, engagement and conversion metrics.

    An example of marketing cohort chart

    There are two types of cohort analysis : acquisition-based cohort analysis and behavioural-based cohort analysis.

    Acquisition-based cohort analysis

    An acquisition-based cohort divides users by the date they purchased your product or service and tracks their behaviour afterward. 

    For example, one cohort could be all the users who signed up for your product in November. Another could be the users who signed up for your product in October. 

    You could then run a cohort analysis to see how the behaviour of the two cohorts differed. 

    Did the November cohort show higher engagement rates, increased frequency of visits post-acquisition or quicker conversions compared to the October cohort ? Analysing these cohorts can help with refining marketing strategies, optimising user experiences and improving retention and conversion rates.

    As you can see from the example, acquisition-based cohorts are a great way to track the initial acquisition and how user behaviour evolves post-acquisition.

    Behavioural-based cohort analysis

    A behavioural-based cohort divides users by their actions on your site. That could be their bounce rate, the number of actions they took on your site, their average time on site and more.

    View of returning visitors cohort report in Matomo dashboard

    Behavioural cohort analysis gives you a much deeper understanding of user behaviour and how they interact with your website.

    What can you achieve with a marketing cohort analysis ?

    A marketing cohort analysis is a valuable tool that can help marketers and product teams achieve the following goals :

    Understand which customers churn and why

    Acquisition and behavioural cohort analyses help marketing teams understand when and why customers leave. This is one of the most common goals of a marketing cohort analysis. 

    Learn which customers are most valuable

    Want to find out which channels create the most valuable customers or what actions customers take that increase their loyalty ? You can use a cohort analysis to do just that. 

    For example, you may find out you retain users who signed up via direct traffic better than those that signed up from an ad campaign. 

    Discover how to improve your product

    You can even use cohort analysis to identify opportunities to improve your website and track the impact of your changes. For example, you could see how visitor behaviour changes after a website refresh or whether visitors who take a certain action make more purchases. 

    Find out how to improve your marketing campaign

    A marketing cohort analysis makes it easy to find out which campaigns generate the best and most profitable customers. For example, you can run a cohort analysis to determine which channel (PPC ads, organic search, social media, etc.) generates customers with the lowest churn rate. 

    If a certain ad campaign generates the low-churn customers, you can allocate a budget accordingly. Alternatively, if customers from another ad campaign churn quickly, you can look into why that may be the case and optimise your campaigns to improve them. 

    Measure the impact of changes

    You can use a behavioural cohort analysis to understand what impact changes to your website or product have on active users. 

    If you introduced a pricing page to your website, for instance, you could analyse the behaviour of visitors who interacted with that page compared to those who didn’t, using behavioural cohort analysis to gauge the impact of these website changes on engagemen or conversions.

    The problem with cohort analysis in Google Analytics

    Google Analytics is often the first platform marketers turn to when they want to run a cohort analysis. While it’s a free solution, it’s not the most accurate or easy to use and users often encounter various issues

    For starters, Google Analytics can’t process user visitor data if they reject cookies. This can lead to an inaccurate view of traffic and compromise the reliability of your insights.

    In addition, GA is also known for sampling data, meaning it provides a subset rather than the complete dataset. Without the complete view of your website’s performance, you might make the wrong decisions, leading to less effective campaigns, missed opportunities and difficulties in reaching marketing goals.

    How to analyse cohorts with Matomo

    Luckily, there is an alternative to Google Analytics. 

    As the leading open-source web analytics solution, Matomo offers a robust option for cohort analysis. With its 100% accurate data, thanks to the absence of sampling, and its privacy-friendly tracking, users can rely on the data without resorting to guesswork. It is a premium feature included with our Matomo Cloud or available to purchase on the Matomo Marketplace for Matomo On-Premise users.

    Below, we’ll show how you can run a marketing cohort analysis using Matomo.

    Set a goal

    Setting a goal is the first step in running a cohort analysis with any platform. Define what you want to achieve from your analysis and choose the metrics you want to measure. 

    For example, you may want to improve your customer retention rate over the first 90 days. 

    Define cohorts

    Next, create cohorts by defining segmentation criteria. As we’ve discussed above, this could be acquisition-based or behavioural. 

    Matomo makes it easy to define cohorts and create charts. 

    In the sidebar menu, click Visitors > Cohorts. You’ll immediately see Matomo’s standard cohort report (something like the one below).

    Marketing cohort by bounce rate of visitors in Matomo dashboard

    In the example above, we’ve created cohorts by bounce rate. 

    You can view cohorts by weekly, monthly or yearly periods using the date selector and change the metric using the dropdown. Other metrics you can analyse cohorts by include :

    • Unique visitors
    • Return visitors
    • Conversion rates
    • Revenue
    • Actions per visit

    Change the data selection to create your desired cohort, and Matomo will automatically generate the report. 

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    Analyse your cohort chart

    Cohort charts can be intimidating initially, but they are pretty easy to understand and packed with insights. 

    Here’s an example of an acquisition-based cohort chart from Matomo looking at the percentage of returning visitors :

    An Image of a marketing cohort chart in Matomo Analytics

    Cohorts run vertically. The oldest cohort (visitors between February 13 – 19) is at the top of the chart, with the newest cohort (April 17 – 23) at the bottom. 

    The period of time runs horizontally — daily in this case. The cells show the corresponding value for the metric we’re plotting (the percentage of returning visitors). 

    For example, 98.69% of visitors who landed on your site between February 13 – 19, returned two weeks later. 

    Usually, running one cohort analysis isn’t enough to identify a problem or find a solution. That’s why comparing several cohort analyses or digging deeper using segmentation is important.

    Segment your cohort chart

    Matomo lets you dig deeper by segmenting each cohort to examine their behaviour’s specifics. You can do this from the cohort report by clicking the segmented visitor log icon in the relevant row.

    Segmented visit log in Matomo cohort report
    Segmented cohort visitor log in Matomo

    Segmenting cohorts lets you understand why users behave the way they do. For example, suppose you find that users you purchased on Black Friday don’t return to your site often. In that case, you may want to rethink your offers for next year to target an audience with potentially better customer lifetime value. 

    Start using Matomo for marketing cohort analysis

    A marketing cohort analysis can teach you a lot about your customers and the health of your business. But you need the right tools to succeed. 

    Matomo provides an effective and privacy-first way to run your analysis. You can create custom customer segments based on almost anything, from demographics and geography to referral sources and user behaviour. 

    Our custom cohort analysis reports and colour-coded visualisations make it easy to analyse cohorts and spot patterns. Best of all, the data is 100% accurate. Unlike other web analytics solution or cohort analysis tools, we don’t sample data. 

    Find out how you can use Matomo to run marketing cohort analysis by trialling us free for 21 days. No credit card required.

  • How to Increase Conversions With Form Analysis

    30 janvier 2024, par Erin

    Forms are one of the most important elements of your website. They are also one of the most difficult elements to analyse and improve. 

    Unlike a webpage, forms aren’t all that easy to analyse with standard web analytics tools. You need to learn how to conduct form analysis if you want to improve your forms’ conversion rates and increase revenue. 

    In this article, we’ll explain what form analysis is and why conducting a thorough form analysis is so important. 

    What is form analysis ?

    Form analysis is a process that measures the effectiveness of your forms. Form analysis uses several tools and techniques like a form analytics platform, heatmaps, and session recordings to collect user data and understand how visitors behave when filling in forms. 

    The goal is to improve the design and effectiveness of your forms, reducing abandonment rate and encouraging more users to submit them. 

    There are plenty of reasons visitors could be having trouble with your forms, from confusing form fields to poor design and lengthy verification processes. Form analytics can help you pinpoint why your form’s conversion rate is so low or why so many users abandon your form halfway through filling it in. 

    Why is form analysis important ?

    Website forms have some of the highest bounce rates and abandonments of any website element. By analysing your forms, you can achieve the following outcomes :

    Why is form analytics important?

    Reduce form abandonment

    When it’s tough enough to get users to start filling in your form, the last thing you want them to do is abandon it halfway through. But that’s probably what your users are doing more than you’d like to think. 

    Why are they abandoning it ? Even if you’re humble enough to admit you didn’t create the greatest form the world’s ever seen, it can still be incredibly difficult to pin down why users give up on your form.

    That’s unless you conduct a form analysis. By analysing metrics and user behaviour, you can pinpoint and rectify the issues that cause users to abandon your form. 

    Improve the user experience

    Best practices will only take you so far. How users behave when filling in a form on your website may be completely different to how they behave on another site. That’s why you need to use form analysis to understand how users behave specifically on your website — and then use that information to optimise the design, layout, and content of the form to better suit them. 

    If one field is regularly left empty, for example, you can delete it. If users spend several minutes filling out a form with a high abandonment rate, you could shorten it. 

    The goal isn’t to make the best form ever but to make the best form for your audience. 

    Increase conversions

    Ultimately, form analysis helps you improve your form’s most important metric : conversions. Reducing your abandonment rate will naturally lead to more completions, but so will taking advantage of other optimisation opportunities that only become clear with form analysis. This can include optimisations like :

    • Moving the form higher up on the page
    • Shortening the form
    • Changing the heading and CTAs
    • Renaming field labels 

    A thorough form analysis process can ensure your forms generate as many conversions as possible. 

    Why do users abandon forms ?

    Are you already suffering from high form abandonment rates ? Don’t worry, you’re not alone. Marketers regularly make the same mistakes when creating forms that cause users to give up halfway through completion.

    Here are some of the most common reasons for form abandonment :

    • There are too many steps. If you’re telling users they’ve just completed step 2 of 12, you can bet they won’t bother finishing your form. 
    • They ask for too much information. No one wants to fill out a long form, and often, users won’t have the information on hand if you ask for too much. Just look at the rate left blank from the Unneeded Fields report in the screenshot below :
    A screenshot showing fields left blank by users
    • The form is confusing. Unclear form fields or directions can put users off. 
    • All the fields are free text and time-consuming. Filling out forms with long text fields takes too much time. To speed things up, use dropdown options in the fields, but keep the options to a minimum. This not only helps users finish the form faster but also makes it easier to analyse the data later because it keeps the data format consistent so you can organise the information more efficiently. 
    • Users don’t trust the form. This is a particular problem on checkout pages where users are entering sensitive information.

    How to conduct form analysis

    You need to collect user behaviour data to effectively analyse your forms. But a lot of traditional website analytics tools won’t have the required functionality. 

    Matomo is different. Our web analytics solution offers comprehensive web analytics as well as additional features like Heatmaps, Session Recordings, A/B Testing, and Form Analytics to provide all the functionality you need. 

    Now if you don’t use Matomo, you can try it free for 21 days (no credit card required) to see if it’s the right tool for you.

    Whether you use Matomo or not is up to you. But, once you have a suitable tool in place, just follow the steps below to conduct a form analysis. 

    Check your analytics

    Tracking and analysing specific form metrics should be the first place you start. We recommend collecting data on the following metrics :

    • Form starter rate : the percentage of visitors who actually start to fill in your form
    • Completion rate : the percentage of visitors who complete the form
    • Form abandonment rate : the percentage of users who gave up filling in your form
    • Time spent completing your form : the average length of time users spend on your form

    Let’s look at these metrics are in Matomo’s Form Analytics :

    A screenshot of Matomo's form analytics dashboard

    The dashboard shows an overview of these metrics over a given period, allowing you to see at a glance whether there are issues you need to rectify. 

    Next, deep dive into the performance of each form to see things like :

    • Drop off fields
    • Unused fields
    • Entry field
    • Most corrected fields 

    You can even use Matomo’s visitor log to see who’s behind every submission.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    Use a heatmap

    A heatmap is a colour-based graphical representation of data. A heatmap will show what users to do on your website, including : 

    • How far they scroll
    • Which buttons they click on
    • Where they focus their attention

    When used on a webpage with a form, you’ll be able to see how often users interact with your form based on the heatmap colour, with warmer colours representing greater engagement levels.

    Let’s look at a heatmap in Matomo :

    A screenshot of Matomo's heatmap feature

    This heatmap is showing us how far down users have scrolled. It’s clear that only 63% of visitors are reaching the point above our call to action to see all features. We might want to consider moving that call to action up in order to get more engagement. 

    A heatmap is a great way to see whether your form’s placement gets the level of attention you want from visitors and to what extent visitors interact with your field.

    Record user sessions

    Session replays go even further than heatmaps, recording a real-life user interacting with your site. It’s like looking over a visitor’s shoulder while they use your site.

    A screenshot of Matomo's heatmap feature

    With Matomo, you can record any sessions where the user takes a certain action (like starting to fill in a form), allowing you to build a rich library of qualitative data. 

    You can then replay a recorded session at your leisure to understand exactly how users interact with your forms.

    Segment users

    If you really want to understand how visitors use your forms, then it’s essential to segment your data. 

    You can segment all Form Analytics reports by over 100 pre-built segments in Matomo.

    A screenshot of Matomo's user segmentation feature

    One way to segment your data is by comparing the average time on form of those who completed the form with those who abandoned it. 

    If users abandon a form quickly, that could indicate your form is irrelevant to this audience or too long. If users spend a lot of time on the form, however, it’s probably safe to assume that it is relevant but there is something wrong with the form itself. 

    Looking at the Field Timings report will help you pinpoint which field visitors are spending the most time on and causing frustration. 

    Field Timings Report example in Matomo dashboard

    The Field Timings example report in Matomo above, it’s evident that the “Overview of your needs” field takes up the most time (avg. time spent is 1 min 40s). To improve this, we might want to change it to a dropdown field. This way, users can quickly select options, and if necessary, provide additional details.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    Another way is to segment data by traffic source and compare each source’s conversion rate. This will show whether one traffic source converts better than another or if one source isn’t interested in your form at all.

    How to optimise web forms

    Want to implement what you’ve learnt from your form analysis ? Follow these steps to optimise your existing web forms. 

    Define your form’s purpose

    The first step in optimising your existing web forms is to give a clear and definitive purpose to every single one. 

    When you have a defined goal, creating a form users will complete is much easier. After all, if you don’t know why people should fill in one of your forms, how would a visitor possibly know ?

    Take a look at one of our forms below :

    A form on Matomo's website

    The purpose of this form is to get users to sign up for a free trial of our web analytics platform, and every element works towards that goal :

    • The headline directs the user to take action
    • The copy explains that it’s a free trial that doesn’t require credit card details
    • The green call-to-action button reinforces the action and benefit 
    • There is validation to support this under the form – “Trusted on over 1 million websites in over 190+ countries”

    Our clear instructions leave users no doubt about why they should fill in the form or what will happen. 

    Choose the right type of form

    You can use several forms on your website, each with different designs, form fields, and goals.

    For example :

    • Registration forms are fairly minimalist and designed to collect the least amount of data possible. 
    • Contact forms are concise so that it’s easy for potential customers to reach your team. 
    • Checkout forms balance a need to collect important data with a streamlined design that doesn’t put users off.
    • Lead generation forms are compelling and usually include qualifying questions so sales teams can score leads.

    Make sure you are using the right type of form to avoid abandonments and other issues. For example, requiring users to fill in a lengthy lead generation-style form when you want them to sign up for a free trial will probably kill your conversion rate. 

    Test form elements

    If your form analysis has shed light on one or two issues, you can use A/B or multivariate testing to trial new elements or designs and see how they compare.

    There’s no shortage of elements you can test, including the form’s :

    • Headline
    • Placement
    • Design
    • CTA button
    • Colour-scheme
    • Length
    • Form fields
    Matomo A/B Test feature

    Matomo makes it easy to create and run A/B tests on your website’s forms. 

    Move your form above the fold

    One of the simplest ways to optimise your web form is to move it above the fold — that’s the section of the screen users see when they load your page. 

    Why ? Well, the more people who see your form, the more people will fill it in. And when it’s above the fold, users can’t help but see it.

    Conclusion

    Forms are one of the most important elements on your website, so why not treat them as such and regularly run a thorough form analysis ? By doing so, you’ll identify ways to optimise your form, improve the user experience, and improve conversions. 

    Matomo is the best platform for conducting form analysis. Our combination of web analytics, Form Analytics, Session Recordings, and Heatmaps means you have all the tools you need to learn exactly how visitors interact with your forms. 

    See just how powerful Matomo’s tools are by starting a free 21-day trial, no credit card required.