Recherche avancée

Médias (91)

Autres articles (67)

  • Les autorisations surchargées par les plugins

    27 avril 2010, par

    Mediaspip core
    autoriser_auteur_modifier() afin que les visiteurs soient capables de modifier leurs informations sur la page d’auteurs

  • Publier sur MédiaSpip

    13 juin 2013

    Puis-je poster des contenus à partir d’une tablette Ipad ?
    Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir

  • Submit bugs and patches

    13 avril 2011

    Unfortunately a software is never perfect.
    If you think you have found a bug, report it using our ticket system. Please to help us to fix it by providing the following information : the browser you are using, including the exact version as precise an explanation as possible of the problem if possible, the steps taken resulting in the problem a link to the site / page in question
    If you think you have solved the bug, fill in a ticket and attach to it a corrective patch.
    You may also (...)

Sur d’autres sites (9766)

  • how to specify duration in live m3u8 stream using ffmpeg ?

    19 mars 2013, par user1788736

    I want to specify a duration for example 4 min when using ffmpeg but i keep getting error :

    ffmpeg -i "./test.m3u8" -t 04:00 "output.mp4"

    and error i get is this :

    Invalid duration specification for t: 04:00

    also these warnings in yellow color :

    max_analyze_duration 5000000 reached at 5014800
    Could not find codec parameters (Video: h264 (
    Could not find codec parameters (Audio: aac (
    Could not find codec parameters (Video: h264 (
    Could not find codec parameters (Audio: aac (

    hope you guys help me what i am doing wrong. Thanks in advance.

  • Encoder/Decoder PCM to AMR Android

    2 mars 2013, par Syred

    I've been looking for a while now for any java library that allows me to encode and decode a PCM-AMR audio stream that is sent through a TCP socket connection. Without having to use Android's JNI.

    Is there anything that can help me ?

    In the worst case scenario. How can I do it using any C++ library with JNI ? (any reference of how to use ffmpeg with JNI will be appreciated)

    Hope you can help me.

  • Tour of Part of the VP8 Process

    18 novembre 2010, par Multimedia Mike — VP8

    My toy VP8 encoder outputs a lot of textual data to illustrate exactly what it’s doing. For those who may not be exactly clear on how this or related algorithms operate, this may prove illuminating.

    Let’s look at subblock 0 of macroblock 0 of a luma plane :

     subblock 0 (original)
      92  91  89  86
      91  90  88  86
      89  89  89  88
      89  87  88  93
    

    Since it’s in the top-left corner of the image to be encoded, the phantom samples above and to the left are implicitly 128 for the purpose of intra prediction (in the VP8 algorithm).

     subblock 0 (original)
         128 128 128 128
     128  92  91  89  86
     128  91  90  88  86
     128  89  89  89  88
     128  89  87  88  93
    


    Using the 4×4 DC prediction mode means averaging the 4 top predictors and 4 left predictors. So, the predictor is 128. Subtract this from each element of the subblock :

     subblock 0, predictor removed
     -36 -37 -39 -42
     -37 -38 -40 -42
     -39 -39 -39 -40
     -39 -41 -40 -35
    

    Next, run the subblock through the forward transform :

     subblock 0, transformed
     -312   7   1   0
        1  12  -5   2
        2  -3   3  -1
        1   0  -2   1
    

    Quantize (integer divide) each element ; the DC (first element) and AC (rest of the elements) quantizers are both 4 :

     subblock 0, quantized
     -78   1   0   0
       0   3  -1   0
       0   0   0   0
       0   0   0   0
    

    The above block contains the coefficients that are actually transmitted (zigzagged and entropy-encoded) through the bitstream and decoded on the other end.

    The decoding process looks something like this– after the same coefficients are decoded and rearranged, they are dequantized (multiplied) by the original quantizers :

     subblock 0, dequantized
     -312   4   0   0
        0  12  -4   0
        0   0   0   0
        0   0   0   0
    

    Note that these coefficients are not exactly the same as the original, pre-quantized coefficients. This is a large part of where the “lossy” in “lossy video compression” comes from.

    Next, the decoder generates a base predictor subblock. In this case, it’s all 128 (DC prediction for top-left subblock) :

     subblock 0, predictor
      128 128 128 128
      128 128 128 128
      128 128 128 128
      128 128 128 128
    

    Finally, the dequantized coefficients are shoved through the inverse transform and added to the base predictor block :

     subblock 0, reconstructed
      91  91  89  85
      90  90  89  87
      89  88  89  90
      88  88  89  92
    

    Again, not exactly the same as the original block, but an incredible facsimile thereof.

    Note that this decoding-after-encoding demonstration is not merely pedagogical– the encoder has to decode the subblock because the encoding of successive subblocks may depend on this subblock. The encoder can’t rely on the original representation of the subblock because the decoder won’t have that– it will have the reconstructed block.

    For example, here’s the next subblock :

     subblock 1 (original)
      84  84  87  90
      85  85  86  93
      86  83  83  89
      91  85  84  87
    

    Let’s assume DC prediction once more. The 4 top predictors are still all 128 since this subblock lies along the top row. However, the 4 left predictors are the right edge of the subblock reconstructed in the previous example :

     subblock 1 (original)
        128 128 128 128
     85  84  84  87  90
     87  85  85  86  93
     90  86  83  83  89
     92  91  85  84  87
    

    The DC predictor is computed as (128 + 128 + 128 + 128 + 85 + 87 + 90 + 92 + 4) / 8 = 108 (the extra +4 is for rounding considerations). (Note that in this case, using the original subblock’s right edge would also have resulted in 108, but that’s beside the point.)

    Continuing through the same process as in subblock 0 :

     subblock 1, predictor removed
     -24 -24 -21 -18
     -23 -23 -22 -15
     -22 -25 -25 -19
     -17 -23 -24 -21
    

    subblock 1, transformed
    -173 -9 14 -1
    2 -11 -4 0
    1 6 -2 3
    -5 1 0 1

    subblock 1, quantized
    -43 -2 3 0
    0 -2 -1 0
    0 1 0 0
    -1 0 0 0

    subblock 1, dequantized
    -172 -8 12 0
    0 -8 -4 0
    0 4 0 0
    -4 0 0 0

    subblock 1, predictor
    108 108 108 108
    108 108 108 108
    108 108 108 108
    108 108 108 108

    subblock 1, reconstructed
    84 84 87 89
    86 85 87 91
    86 83 84 89
    90 85 84 88

    I hope this concrete example (straight from a working codec) clarifies this part of the VP8 process.