Recherche avancée

Médias (1)

Mot : - Tags -/pirate bay

Autres articles (97)

  • Multilang : améliorer l’interface pour les blocs multilingues

    18 février 2011, par

    Multilang est un plugin supplémentaire qui n’est pas activé par défaut lors de l’initialisation de MediaSPIP.
    Après son activation, une préconfiguration est mise en place automatiquement par MediaSPIP init permettant à la nouvelle fonctionnalité d’être automatiquement opérationnelle. Il n’est donc pas obligatoire de passer par une étape de configuration pour cela.

  • Gestion des droits de création et d’édition des objets

    8 février 2011, par

    Par défaut, beaucoup de fonctionnalités sont limitées aux administrateurs mais restent configurables indépendamment pour modifier leur statut minimal d’utilisation notamment : la rédaction de contenus sur le site modifiables dans la gestion des templates de formulaires ; l’ajout de notes aux articles ; l’ajout de légendes et d’annotations sur les images ;

  • Dépôt de média et thèmes par FTP

    31 mai 2013, par

    L’outil MédiaSPIP traite aussi les média transférés par la voie FTP. Si vous préférez déposer par cette voie, récupérez les identifiants d’accès vers votre site MédiaSPIP et utilisez votre client FTP favori.
    Vous trouverez dès le départ les dossiers suivants dans votre espace FTP : config/ : dossier de configuration du site IMG/ : dossier des média déjà traités et en ligne sur le site local/ : répertoire cache du site web themes/ : les thèmes ou les feuilles de style personnalisées tmp/ : dossier de travail (...)

Sur d’autres sites (10673)

  • How to encode a video from several images generated in a C++ program without writing the separate frame images to disk ?

    29 janvier 2016, par ksb496

    I am writing a C++ code where a sequence of N different frames is generated after performing some operations implemented therein. After each frame is completed, I write it on the disk as IMG_%d.png, and finally I encode them to a video through ffmpeg using the x264 codec.

    The summarized pseudocode of the main part of the program is the following one :

    std::vector<int> B(width*height*3);
    for (i=0; i/ void generateframe(std::vector<int> &amp;, int)
     generateframe(B, i); // Returns different images for different i values.
     sprintf(s, "IMG_%d.png", i+1);
     WriteToDisk(B, s); // void WriteToDisk(std::vector<int>, char[])
    }
    </int></int></int>

    The problem of this implementation is that the number of desired frames, N, is usually high (N 100000) as well as the resolution of the pictures (1920x1080), resulting into an overload of the disk, producing write cycles of dozens of GB after each execution.

    In order to avoid this, I have been trying to find documentation about parsing directly each image stored in the vector B to an encoder such as x264 (without having to write the intermediate image files to the disk). Albeit some interesting topics were found, none of them solved specifically what I exactly want to, as many of them concern the execution of the encoder with existing images files on the disk, whilst others provide solutions for other programming languages such as Python (here you can find a fully satisfactory solution for that platform).

    The pseudocode of what I would like to obtain is something similar to this :

    std::vector<int> B(width*height*3);
    video_file=open_video("Generated_Video.mp4", ...[encoder options]...);
    for (i=0; icode></int>

    According to what I have read on related topics, the x264 C++ API might be able to do this, but, as stated above, I did not find a satisfactory answer for my specific question. I tried learning and using directly the ffmpeg source code, but both its low ease of use and compilation issues forced me to discard this possibility as a mere non-professional programmer I am (I take it as just as a hobby and unluckily I cannot waste that many time learning something so demanding).

    Another possible solution that came to my mind is to find a way to call the ffmpeg binary file in the C++ code, and somehow manage to transfer the image data of each iteration (stored in B) to the encoder, letting the addition of each frame (that is, not "closing" the video file to write) until the last frame, so that more frames can be added until reaching the N-th one, where the video file will be "closed". In other words, call ffmpeg.exe through the C++ program to write the first frame to a video, but make the encoder "wait" for more frames. Then call again ffmpeg to add the second frame and make the encoder "wait" again for more frames, and so on until reaching the last frame, where the video will be finished. However, I do not know how to proceed or if it is actually possible.

    Edit 1 :

    As suggested in the replies, I have been documenting about named pipes and tried to use them in my code. First of all, it should be remarked that I am working with Cygwin, so my named pipes are created as they would be created under Linux. The modified pseudocode I used (including the corresponding system libraries) is the following one :

    FILE *fd;
    mkfifo("myfifo", 0666);

    for (i=0; i/ void WriteToPipe(std::vector<int>, FILE *&amp;fd)
     fflush(fd);
     fd=fclose("myfifo");
    }
    unlink("myfifo");
    </int>

    WriteToPipe is a slight modification of the previous WriteToFile function, where I made sure that the write buffer to send the image data is small enough to fit the pipe buffering limitations.

    Then I compile and write the following command in the Cygwin terminal :

    ./myprogram | ffmpeg -i pipe:myfifo -c:v libx264 -preset slow -crf 20 Video.mp4

    However, it remains stuck at the loop when i=0 at the "fopen" line (that is, the first fopen call). If I had not called ffmpeg it would be natural as the server (my program) would be waiting for a client program to connect to the "other side" of the pipe, but it is not the case. It looks like they cannot be connected through the pipe somehow, but I have not been able to find further documentation in order to overcome this issue. Any suggestion ?

  • Convert *.hdr sequences to HDR10 videos ffmpeg

    3 mars 2021, par kmd999

    I have some *.hdr sequences, and I would like to convert them to HDR10 videos.&#xA;I have tried using FFmpeg but FFMPEG errors that it can't find videos.

    &#xA;

    ffmpeg -r 60 -i %d.hdr -pix_fmt yuv444p10le -c:v libx265   \&#xA;-x265-params hdr-opt=1:repeat-headers=1:colorprim=bt2020:transfer=smpte2084:colormatrix=bt2020nc:max-cll=0,0 \&#xA;-crf 25 -preset veryfast t.mp4&#xA;

    &#xA;

    This is what I tried. I think this is generally the code to convert to HDR10 videos. I didn't put master-display there because I don't have information. I wonder if master-display is needed.

    &#xA;

    I also wonder since this *hdr sequence is likely sRGB, what happens if I specify it to be bt2020 ?

    &#xA;

  • Prevent ffmpeg from changing the intensity of colors while downscaling the resolution of the video

    29 août 2022, par dravit

    I have a use case where I need to downscale a 716x1280 mp4 video to 358x640 (half of the original). Command that I used is

    &#xA;

    ffmpeg -i ./input.mp4 -vf "scale=640:640:force_original_aspect_ratio=decrease,pad=ceil(iw/2)*2:ceil(ih/2)*2" ./output.mp4&#xA;

    &#xA;

    Out of 10 sample videos, 2 of the them suffered impact on colors. Below I have attached a comparison from the one which was impacted the most.

    &#xA;

    Comparison of frames from the most impacted video

    &#xA;

    NOTE : The one on the right is a frame from the original video and the frame on the left is the one from the processed (down scaled) video. Notice the colors red and green in the image (even the skin color and hair color were changed).

    &#xA;

    What I am looking for is

    &#xA;

      &#xA;
    • Is there any way I can prevent changes like these happening ? Probably some flag on saturation, brightness, contrast or any other parameter.
    • &#xA;

    • I am assuming that ffmpeg uses some default settings while downscaling a video. What made ffmpeg change colors only for these two videos ? If it made similar changes for the rest of the videos as well, how to predict this behaviour before hand ?
    • &#xA;

    &#xA;

    EDIT :

    &#xA;

    What I already have Tried ?

    &#xA;

      &#xA;
    • -crf with values 0 and 18.
    • &#xA;

    • -preset veryslow as mentioned here
    • &#xA;

    &#xA;

    None helped

    &#xA;

    Mediainfo input V/S output

    &#xA;

    &#xA;&#xA;&#xA;&#xA;

    &#xA;

    &#xA;

    &#xA;

    &#xA;

    &#xA;

    &#xA;&#xA;

    &#xA;

    &#xA;

    &#xA;

    &#xA;

    &#xA;

    &#xA;

    &#xA;

    &#xA;

    &#xA;

    &#xA;

    &#xA;

    &#xA;

    &#xA;

    &#xA;

    &#xA;

    &#xA;

    &#xA;

    &#xA;

    &#xA;

    &#xA;

    &#xA;

    &#xA;

    &#xA;

    &#xA;

    &#xA;

    param input output
    color range Limited NA (attribute not in description)
    color primaries BT.2020 NA (attribute not in description)
    transfer characteristics HLG NA (attribute not in description)
    matrix coefficients BT.2020 non-constant NA (attribute not in description)
    bit deapth 8 8

    &#xA;

    &#xA;

    Logs of the ffmpeg command

    &#xA;

    ffmpeg -i ./input.mp4 -vf "scale=640:640:force_original_aspect_ratio=decrease,pad=ceil(iw/2)*2:ceil(ih/2)*2" -movflags &#x2B;faststart ./output.mp4&#xA;ffmpeg version 4.3.1 Copyright (c) 2000-2020 the FFmpeg developers&#xA;  built with Apple clang version 12.0.0 (clang-1200.0.32.28)&#xA;  configuration: --prefix=/usr/local/Cellar/ffmpeg/4.3.1_9 --enable-shared --enable-pthreads --enable-version3 --enable-avresample --cc=clang --host-cflags= --host-ldflags= --enable-ffplay --enable-gnutls --enable-gpl --enable-libaom --enable-libbluray --enable-libdav1d --enable-libmp3lame --enable-libopus --enable-librav1e --enable-librubberband --enable-libsnappy --enable-libsrt --enable-libtesseract --enable-libtheora --enable-libvidstab --enable-libvorbis --enable-libvpx --enable-libwebp --enable-libx264 --enable-libx265 --enable-libxml2 --enable-libxvid --enable-lzma --enable-libfontconfig --enable-libfreetype --enable-frei0r --enable-libass --enable-libopencore-amrnb --enable-libopencore-amrwb --enable-libopenjpeg --enable-librtmp --enable-libspeex --enable-libsoxr --enable-videotoolbox --enable-libzmq --enable-libzimg --disable-libjack --disable-indev=jack&#xA;  libavutil      56. 51.100 / 56. 51.100&#xA;  libavcodec     58. 91.100 / 58. 91.100&#xA;  libavformat    58. 45.100 / 58. 45.100&#xA;  libavdevice    58. 10.100 / 58. 10.100&#xA;  libavfilter     7. 85.100 /  7. 85.100&#xA;  libavresample   4.  0.  0 /  4.  0.  0&#xA;  libswscale      5.  7.100 /  5.  7.100&#xA;  libswresample   3.  7.100 /  3.  7.100&#xA;  libpostproc    55.  7.100 / 55.  7.100&#xA;Input #0, mov,mp4,m4a,3gp,3g2,mj2, from &#x27;./input.mp4&#x27;:&#xA;  Metadata:&#xA;    major_brand     : isom&#xA;    minor_version   : 512&#xA;    compatible_brands: isomiso2avc1mp41&#xA;    encoder         : Lavf58.45.100&#xA;  Duration: 00:00:30.05, start: 0.000000, bitrate: 10366 kb/s&#xA;    Stream #0:0(und): Video: h264 (Main) (avc1 / 0x31637661), yuv420p(tv, bt2020nc/bt2020/arib-std-b67), 716x1280, 10116 kb/s, 30 fps, 30 tbr, 19200 tbn, 38400 tbc (default)&#xA;    Metadata:&#xA;      handler_name    : Core Media Video&#xA;    Stream #0:1(und): Audio: aac (LC) (mp4a / 0x6134706D), 44100 Hz, stereo, fltp, 245 kb/s (default)&#xA;    Metadata:&#xA;      handler_name    : Core Media Audio&#xA;Stream mapping:&#xA;  Stream #0:0 -> #0:0 (h264 (native) -> h264 (libx264))&#xA;  Stream #0:1 -> #0:1 (aac (native) -> aac (native))&#xA;Press [q] to stop, [?] for help&#xA;[libx264 @ 0x7faab4808800] using cpu capabilities: MMX2 SSE2Fast SSSE3 SSE4.2 AVX FMA3 BMI2 AVX2&#xA;[libx264 @ 0x7faab4808800] profile High, level 3.0, 4:2:0, 8-bit&#xA;[libx264 @ 0x7faab4808800] 264 - core 161 r3027 4121277 - H.264/MPEG-4 AVC codec - Copyleft 2003-2020 - http://www.videolan.org/x264.html - options: cabac=1 ref=3 deblock=1:0:0 analyse=0x3:0x113 me=hex subme=7 psy=1 psy_rd=1.00:0.00 mixed_ref=1 me_range=16 chroma_me=1 trellis=1 8x8dct=1 cqm=0 deadzone=21,11 fast_pskip=1 chroma_qp_offset=-2 threads=12 lookahead_threads=2 sliced_threads=0 nr=0 decimate=1 interlaced=0 bluray_compat=0 constrained_intra=0 bframes=3 b_pyramid=2 b_adapt=1 b_bias=0 direct=1 weightb=1 open_gop=0 weightp=2 keyint=250 keyint_min=25 scenecut=40 intra_refresh=0 rc_lookahead=40 rc=crf mbtree=1 crf=23.0 qcomp=0.60 qpmin=0 qpmax=69 qpstep=4 ip_ratio=1.40 aq=1:1.00&#xA;Output #0, mp4, to &#x27;./output.mp4&#x27;:&#xA;  Metadata:&#xA;    major_brand     : isom&#xA;    minor_version   : 512&#xA;    compatible_brands: isomiso2avc1mp41&#xA;    encoder         : Lavf58.45.100&#xA;    Stream #0:0(und): Video: h264 (libx264) (avc1 / 0x31637661), yuv420p, 358x640, q=-1--1, 30 fps, 15360 tbn, 30 tbc (default)&#xA;    Metadata:&#xA;      handler_name    : Core Media Video&#xA;      encoder         : Lavc58.91.100 libx264&#xA;    Side data:&#xA;      cpb: bitrate max/min/avg: 0/0/0 buffer size: 0 vbv_delay: N/A&#xA;    Stream #0:1(und): Audio: aac (LC) (mp4a / 0x6134706D), 44100 Hz, stereo, fltp, 128 kb/s (default)&#xA;    Metadata:&#xA;      handler_name    : Core Media Audio&#xA;      encoder         : Lavc58.91.100 aac&#xA;[mp4 @ 0x7faab5808800] Starting second pass: moving the moov atom to the beginning of the file&#xA;frame=  901 fps=210 q=-1.0 Lsize=    3438kB time=00:00:30.02 bitrate= 938.0kbits/s speed=7.01x&#xA;video:2933kB audio:472kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 0.974633%&#xA;[libx264 @ 0x7faab4808800] frame I:6     Avg QP:22.60  size: 20769&#xA;[libx264 @ 0x7faab4808800] frame P:228   Avg QP:24.84  size:  7657&#xA;[libx264 @ 0x7faab4808800] frame B:667   Avg QP:27.59  size:  1697&#xA;[libx264 @ 0x7faab4808800] consecutive B-frames:  0.9%  0.9%  1.0% 97.2%&#xA;[libx264 @ 0x7faab4808800] mb I  I16..4:  9.5% 64.6% 26.0%&#xA;[libx264 @ 0x7faab4808800] mb P  I16..4:  2.5% 12.2%  2.5%  P16..4: 37.2% 20.6% 11.2%  0.0%  0.0%    skip:13.7%&#xA;[libx264 @ 0x7faab4808800] mb B  I16..4:  0.4%  2.1%  0.2%  B16..8: 42.2%  7.1%  1.2%  direct: 1.8%  skip:44.9%  L0:39.4% L1:52.8% BI: 7.8%&#xA;[libx264 @ 0x7faab4808800] 8x8 transform intra:72.2% inter:74.2%&#xA;[libx264 @ 0x7faab4808800] coded y,uvDC,uvAC intra: 61.8% 67.2% 20.2% inter: 16.7% 13.9% 1.3%&#xA;[libx264 @ 0x7faab4808800] i16 v,h,dc,p: 24% 19%  7% 50%&#xA;[libx264 @ 0x7faab4808800] i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 21% 16% 15%  6%  9% 11%  7% 10%  6%&#xA;[libx264 @ 0x7faab4808800] i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 25% 16% 13%  7%  9% 10%  7%  9%  4%&#xA;[libx264 @ 0x7faab4808800] i8c dc,h,v,p: 53% 16% 26%  5%&#xA;[libx264 @ 0x7faab4808800] Weighted P-Frames: Y:3.9% UV:1.8%&#xA;[libx264 @ 0x7faab4808800] ref P L0: 57.8% 19.5% 14.8%  7.8%  0.1%&#xA;[libx264 @ 0x7faab4808800] ref B L0: 90.7%  7.2%  2.1%&#xA;[libx264 @ 0x7faab4808800] ref B L1: 95.3%  4.7%&#xA;[libx264 @ 0x7faab4808800] kb/s:799.80&#xA;[aac @ 0x7faab2036a00] Qavg: 189.523&#xA;

    &#xA;