Recherche avancée

Médias (91)

Autres articles (98)

  • MediaSPIP 0.1 Beta version

    25 avril 2011, par

    MediaSPIP 0.1 beta is the first version of MediaSPIP proclaimed as "usable".
    The zip file provided here only contains the sources of MediaSPIP in its standalone version.
    To get a working installation, you must manually install all-software dependencies on the server.
    If you want to use this archive for an installation in "farm mode", you will also need to proceed to other manual (...)

  • Problèmes fréquents

    10 mars 2010, par

    PHP et safe_mode activé
    Une des principales sources de problèmes relève de la configuration de PHP et notamment de l’activation du safe_mode
    La solution consiterait à soit désactiver le safe_mode soit placer le script dans un répertoire accessible par apache pour le site

  • Ajouter des informations spécifiques aux utilisateurs et autres modifications de comportement liées aux auteurs

    12 avril 2011, par

    La manière la plus simple d’ajouter des informations aux auteurs est d’installer le plugin Inscription3. Il permet également de modifier certains comportements liés aux utilisateurs (référez-vous à sa documentation pour plus d’informations).
    Il est également possible d’ajouter des champs aux auteurs en installant les plugins champs extras 2 et Interface pour champs extras.

Sur d’autres sites (14185)

  • Android player, FFMPEG, JNI

    14 septembre 2022, par Nikita Pavlenko

    Can I use std::async with jni or I should throughstd::thread or pthread_create ? Because i'm writing android player with my C++ lib that uses std::async for demuxing, video and audio. I saw that every call CallVoidMethod(of course with attach and detach thread) create new thread (thread id in Java methods is increased). And in some time a big error occurres

    


    A/e.androidplaye: java_vm_ext.cc:594] JNI DETECTED ERROR IN APPLICATION: thread Thread[2,tid=3420,Native,Thread*=0xb400007bd4470c00,peer=0x12cc1510,"Thread-8687"] using JNIEnv* from thread Thread[3,tid=3419,Native,Thread*=0xb400007aadc2e400,peer=0x12d00000,"Thread-8688"]&#xA;    java_vm_ext.cc:594]     in call to CallVoidMethodV&#xA;A/e.androidplaye: runtime.cc:675] Runtime aborting...&#xA;    runtime.cc:675] Dumping all threads without mutator lock held&#xA;    runtime.cc:675] All threads:&#xA;    runtime.cc:675] DALVIK THREADS (23):&#xA;    runtime.cc:675] "Thread-8687" prio=10 tid=2 Runnable&#xA;    runtime.cc:675]   | group="" sCount=0 ucsCount=0 flags=0 obj=0x12d80000 self=0xb400007bd4470c00&#xA;    runtime.cc:675]   | sysTid=3420 nice=-10 cgrp=default sched=0/0 handle=0x7aa4166cb0&#xA;    runtime.cc:675]   | state=R schedstat=( 6040359820 215025421 9416 ) utm=498 stm=105 core=1 HZ=100&#xA;    runtime.cc:675]   | stack=0x7aa406f000-0x7aa4071000 stackSize=991KB&#xA;    runtime.cc:675]   | held mutexes= "abort lock" "mutator lock"(shared held)&#xA;    runtime.cc:675]   native: #00 pc 00000000005376cc  /apex/com.android.art/lib64/libart.so (art::DumpNativeStack(std::__1::basic_ostream >&amp;, int, BacktraceMap*, char const*, art::ArtMethod*, void*, bool)&#x2B;128) (BuildId: 56e704c544e6c624201be2ab4933e853)&#xA;    runtime.cc:675]   native: #01 pc 00000000006f0e24  /apex/com.android.art/lib64/libart.so (art::Thread::DumpStack(std::__1::basic_ostream >&amp;, bool, BacktraceMap*, bool) const&#x2B;236) (BuildId: 56e704c544e6c624201be2ab4933e853)&#xA;    runtime.cc:675]   native: #02 pc 00000000006fe6b0  /apex/com.android.art/lib64/libart.so (art::DumpCheckpoint::Run(art::Thread*)&#x2B;208) (BuildId: 56e704c544e6c624201be2ab4933e853)&#xA;    runtime.cc:675]   native: #03 pc 0000000000364174  /apex/com.android.art/lib64/libart.so (art::ThreadList::RunCheckpoint(art::Closure*, art::Closure*)&#x2B;440) (BuildId: 56e704c544e6c624201be2ab4933e853)&#xA;    runtime.cc:675]   native: #04 pc 00000000006fce50  /apex/com.android.art/lib64/libart.so (art::ThreadList::Dump(std::__1::basic_ostream >&amp;, bool)&#x2B;280) (BuildId: 56e704c544e6c624201be2ab4933e853)&#xA;    runtime.cc:675]   native: #05 pc 00000000006d7ec4  /apex/com.android.art/lib64/libart.so (art::AbortState::Dump(std::__1::basic_ostream >&amp;) const&#x2B;212) (BuildId: 56e704c544e6c624201be2ab4933e853)&#xA;    runtime.cc:675]   native: #06 pc 00000000006d2b24  /apex/com.android.art/lib64/libart.so (art::Runtime::Abort(char const*)&#x2B;1016) (BuildId: 56e704c544e6c624201be2ab4933e853)&#xA;    runtime.cc:675]   native: #07 pc 0000000000016ea8  /apex/com.android.art/lib64/libbase.so (android::base::SetAborter(std::__1::function<void>&amp;&amp;)::$_3::__invoke(char const*)&#x2B;80) (BuildId: b77c57f68a484ed93d5a7eda59d83bf9)&#xA;    runtime.cc:675]   native: #08 pc 0000000000016450  /apex/com.android.art/lib64/libbase.so (android::base::LogMessage::~LogMessage()&#x2B;352) (BuildId: b77c57f68a484ed93d5a7eda59d83bf9)&#xA;    runtime.cc:675]   native: #09 pc 0000000000445224  /apex/com.android.art/lib64/libart.so (art::JavaVMExt::JniAbort(char const*, char const*)&#x2B;1612) (BuildId: 56e704c544e6c624201be2ab4933e853)&#xA;    runtime.cc:675]   native: #10 pc 0000000000329258  /apex/com.android.art/lib64/libart.so (art::JavaVMExt::JniAbortV(char const*, char const*, std::__va_list)&#x2B;108) (BuildId: 56e704c544e6c624201be2ab4933e853)&#xA;    runtime.cc:675]   native: #11 pc 000000000048d59c  /apex/com.android.art/lib64/libart.so (art::(anonymous namespace)::ScopedCheck::AbortF(char const*, ...) (.__uniq.99033978352804627313491551960229047428)&#x2B;144) (BuildId: 56e704c544e6c624201be2ab4933e853)&#xA;    runtime.cc:675]   native: #12 pc 0000000000453ad0  /apex/com.android.art/lib64/libart.so (art::(anonymous namespace)::ScopedCheck::Check(art::ScopedObjectAccess&amp;, bool, char const*, art::(anonymous namespace)::JniValueType*) (.__uniq.99033978352804627313491551960229047428)&#x2B;4648) (BuildId: 56e704c544e6c624201be2ab4933e853)&#xA;    runtime.cc:675]   native: #13 pc 0000000000475e2c  /apex/com.android.art/lib64/libart.so (art::(anonymous namespace)::CheckJNI::CheckCallArgs(art::ScopedObjectAccess&amp;, art::(anonymous namespace)::ScopedCheck&amp;, _JNIEnv*, _jobject*, _jclass*, _jmethodID*, art::InvokeType, art::(anonymous namespace)::VarArgs const*) (.__uniq.99033978352804627313491551960229047428)&#x2B;76) (BuildId: 56e704c544e6c624201be2ab4933e853)&#xA;A/e.androidplaye: runtime.cc:675]   native: #14 pc 0000000000474d4c  /apex/com.android.art/lib64/libart.so (art::(anonymous namespace)::CheckJNI::CallMethodV(char const*, _JNIEnv*, _jobject*, _jclass*, _jmethodID*, std::__va_list, art::Primitive::Type, art::InvokeType) (.__uniq.99033978352804627313491551960229047428)&#x2B;268) (BuildId: 56e704c544e6c624201be2ab4933e853)&#xA;    runtime.cc:675]   native: #15 pc 00000000005ca9ec  /apex/com.android.art/lib64/libart.so (art::(anonymous namespace)::CheckJNI::CallVoidMethodV(_JNIEnv*, _jobject*, _jmethodID*, std::__va_list) (.__uniq.99033978352804627313491551960229047428.llvm.5591279935177935698)&#x2B;72) (BuildId: 56e704c544e6c624201be2ab4933e853)&#xA;    runtime.cc:675]   native: #16 pc 0000000000024ad4  /data/app/~~kWvaZj7JOt9YyFawweYvtw==/com.example.androidplayer-_Vqw2zfb57LpijMAPW6U4w==/base.apk (offset 174000) (_JNIEnv::CallVoidMethod(_jobject*, _jmethodID*, ...)&#x2B;172) (BuildId: 2f8cba1fdcec13c03a15bf3de18a4ddd1c91325d)&#xA;    runtime.cc:675]   native: #17 pc 000000000002173c  /data/app/~~kWvaZj7JOt9YyFawweYvtw==/com.example.androidplayer-_Vqw2zfb57LpijMAPW6U4w==/base.apk (offset 174000) (ffmpeg::AndroidPlayer::handleAudioFrame(ffmpeg::Frame const&amp;)&#x2B;184) (BuildId: 2f8cba1fdcec13c03a15bf3de18a4ddd1c91325d)&#xA;    runtime.cc:675]   native: #18 pc 0000000000028488  /data/app/~~kWvaZj7JOt9YyFawweYvtw==/com.example.androidplayer-_Vqw2zfb57LpijMAPW6U4w==/base.apk (offset 174000) (???) (BuildId: 2f8cba1fdcec13c03a15bf3de18a4ddd1c91325d)&#xA;    runtime.cc:675]   native: #19 pc 00000000000283c0  /data/app/~~kWvaZj7JOt9YyFawweYvtw==/com.example.androidplayer-_Vqw2zfb57LpijMAPW6U4w==/base.apk (offset 174000) (???) (BuildId: 2f8cba1fdcec13c03a15bf3de18a4ddd1c91325d)&#xA;    runtime.cc:675]   native: #20 pc 000000000002835c  /data/app/~~kWvaZj7JOt9YyFawweYvtw==/com.example.androidplayer-_Vqw2zfb57LpijMAPW6U4w==/base.apk (offset 174000) (std::__ndk1::__bind_return<void> >, std::__ndk1::tuple, __is_valid_bind_return<void> >, std::__ndk1::tuple >::value>::type std::__ndk1::__bind<void> const&amp;>::operator()(ffmpeg::Frame const&amp;)&#x2B;76) (BuildId: 2f8cba1fdcec13c03a15bf3de18a4ddd1c91325d)&#xA;    runtime.cc:675]   native: #21 pc 00000000000282ec  /data/app/~~kWvaZj7JOt9YyFawweYvtw==/com.example.androidplayer-_Vqw2zfb57LpijMAPW6U4w==/base.apk (offset 174000) (???) (BuildId: 2f8cba1fdcec13c03a15bf3de18a4ddd1c91325d)&#xA;    runtime.cc:675]   native: #22 pc 0000000000028288  /data/app/~~kWvaZj7JOt9YyFawweYvtw==/com.example.androidplayer-_Vqw2zfb57LpijMAPW6U4w==/base.apk (offset 174000) (void std::__ndk1::__invoke_void_return_wrapper<void>::__call const&amp;>&amp;, ffmpeg::Frame const&amp;>(std::__ndk1::__bind<void> const&amp;>&amp;, ffmpeg::Frame const&amp;)&#x2B;48) (BuildId: 2f8cba1fdcec13c03a15bf3de18a4ddd1c91325d)&#xA;    runtime.cc:675]   native: #23 pc 0000000000028234  /data/app/~~kWvaZj7JOt9YyFawweYvtw==/com.example.androidplayer-_Vqw2zfb57LpijMAPW6U4w==/base.apk (offset 174000) (???) (BuildId: 2f8cba1fdcec13c03a15bf3de18a4ddd1c91325d)&#xA;A/e.androidplaye: runtime.cc:675]   native: #24 pc 000000000002725c  /data/app/~~kWvaZj7JOt9YyFawweYvtw==/com.example.androidplayer-_Vqw2zfb57LpijMAPW6U4w==/base.apk (offset 174000) (std::__ndk1::__function::__func const&amp;>, std::__ndk1::allocator const&amp;> >, void (ffmpeg::Frame const&amp;)>::operator()(ffmpeg::Frame const&amp;)&#x2B;48) (BuildId: 2f8cba1fdcec13c03a15bf3de18a4ddd1c91325d)&#xA;    runtime.cc:675]   native: #25 pc 000000000004039c  /data/app/~~kWvaZj7JOt9YyFawweYvtw==/com.example.androidplayer-_Vqw2zfb57LpijMAPW6U4w==/base.apk (offset 380000) (???) (BuildId: 9a9d303cb440eed7364800d0ead0962a65175480)&#xA;    runtime.cc:675]   native: #26 pc 000000000003b1f8  /data/app/~~kWvaZj7JOt9YyFawweYvtw==/com.example.androidplayer-_Vqw2zfb57LpijMAPW6U4w==/base.apk (offset 380000) (std::__ndk1::function<void>::operator()(ffmpeg::Frame const&amp;) const&#x2B;44) (BuildId: 9a9d303cb440eed7364800d0ead0962a65175480)&#xA;    runtime.cc:675]   native: #27 pc 0000000000039dd4  /data/app/~~kWvaZj7JOt9YyFawweYvtw==/com.example.androidplayer-_Vqw2zfb57LpijMAPW6U4w==/base.apk (offset 380000) (ffmpeg::Player::playAudio()&#x2B;164) (BuildId: 9a9d303cb440eed7364800d0ead0962a65175480)&#xA;    runtime.cc:675]   native: #28 pc 000000000003db90  /data/app/~~kWvaZj7JOt9YyFawweYvtw==/com.example.androidplayer-_Vqw2zfb57LpijMAPW6U4w==/base.apk (offset 380000) (???) (BuildId: 9a9d303cb440eed7364800d0ead0962a65175480)&#xA;    runtime.cc:675]   native: #29 pc 000000000003db1c  /data/app/~~kWvaZj7JOt9YyFawweYvtw==/com.example.androidplayer-_Vqw2zfb57LpijMAPW6U4w==/base.apk (offset 380000) (???) (BuildId: 9a9d303cb440eed7364800d0ead0962a65175480)&#xA;    runtime.cc:675]   native: #30 pc 000000000003dacc  /data/app/~~kWvaZj7JOt9YyFawweYvtw==/com.example.androidplayer-_Vqw2zfb57LpijMAPW6U4w==/base.apk (offset 380000) (???) (BuildId: 9a9d303cb440eed7364800d0ead0962a65175480)&#xA;    runtime.cc:675]   native: #31 pc 000000000003da10  /data/app/~~kWvaZj7JOt9YyFawweYvtw==/com.example.androidplayer-_Vqw2zfb57LpijMAPW6U4w==/base.apk (offset 380000) (???) (BuildId: 9a9d303cb440eed7364800d0ead0962a65175480)&#xA;    runtime.cc:675]   native: #32 pc 000000000003e6cc  /data/app/~~kWvaZj7JOt9YyFawweYvtw==/com.example.androidplayer-_Vqw2zfb57LpijMAPW6U4w==/base.apk (offset 380000) (???) (BuildId: 9a9d303cb440eed7364800d0ead0962a65175480)&#xA;    runtime.cc:675]   native: #33 pc 000000000003e5e0  /data/app/~~kWvaZj7JOt9YyFawweYvtw==/com.example.androidplayer-_Vqw2zfb57LpijMAPW6U4w==/base.apk (offset 380000) (???) (BuildId: 9a9d303cb440eed7364800d0ead0962a65175480)&#xA;    runtime.cc:675]   native: #34 pc 000000000003df50  /data/app/~~kWvaZj7JOt9YyFawweYvtw==/com.example.androidplayer-_Vqw2zfb57LpijMAPW6U4w==/base.apk (offset 380000) (???) (BuildId: 9a9d303cb440eed7364800d0ead0962a65175480)&#xA;    runtime.cc:675]   native: #35 pc 00000000000efb14  /apex/com.android.runtime/lib64/bionic/libc.so (__pthread_start(void*)&#x2B;264) (BuildId: 94065bf91428f6ae9fb310c478171302)&#xA;    runtime.cc:675]   native: #36 pc 000000000008c35c  /apex/com.android.runtime/lib64/bionic/libc.so (__start_thread&#x2B;68) (BuildId: 94065bf91428f6ae9fb310c478171302)&#xA;    runtime.cc:675]   (no managed stack frames)&#xA;    runtime.cc:675] &#xA;    runtime.cc:675] "main" prio=10 tid=1 Native&#xA;    runtime.cc:675]   | group="" sCount=1 ucsCount=0 flags=1 obj=0x71915d18 self=0xb400007bd4472800&#xA;    runtime.cc:675]   | sysTid=3241 nice=-10 cgrp=default sched=0/0 handle=0x7bd5ac64f8&#xA;    runtime.cc:675]   | state=S schedstat=( 20358355629 2398850818 13099 ) utm=1560 stm=474 core=5 HZ=100&#xA;    runtime.cc:675]   | stack=0x7ff2616000-0x7ff2618000 stackSize=8188KB&#xA;    runtime.cc:675]   | held mutexes=&#xA;    runtime.cc:675]   native: #00 pc 0000000000086f90  /apex/com.android.runtime/lib64/bionic/libc.so (syscall&#x2B;32) (BuildId: 94065bf91428f6ae9fb310c478171302)&#xA;A/e.androidplaye: runtime.cc:675]   native: #01 pc 000000000047cc80  /apex/com.android.art/lib64/libart.so (art::ConditionVariable::WaitHoldingLocks(art::Thread*)&#x2B;140) (BuildId: 56e704c544e6c624201be2ab4933e853)&#xA;    runtime.cc:675]   native: #02 pc 00000000005c8cac  /apex/com.android.art/lib64/libart.so (art::(anonymous namespace)::CheckJNI::FindClass(_JNIEnv*, char const*) (.__uniq.99033978352804627313491551960229047428.llvm.5591279935177935698)&#x2B;1096) (BuildId: 56e704c544e6c624201be2ab4933e853)&#xA;    runtime.cc:675]   native: #03 pc 000000000011aae0  /system/lib64/libandroid_runtime.so (android::NativeDisplayEventReceiver::dispatchVsync(long, android::PhysicalDisplayId, unsigned int, android::VsyncEventData)&#x2B;80) (BuildId: f73b7e7fab15dc5b96680181e111fb8f)&#xA;    runtime.cc:675]   native: #04 pc 00000000000af3f0  /system/lib64/libgui.so (android::DisplayEventDispatcher::handleEvent(int, int, void*)&#x2B;204) (BuildId: 3f01a4a30b5fa3a4804b8361ddccc4a3)&#xA;    runtime.cc:675]   native: #05 pc 0000000000018184  /system/lib64/libutils.so (android::Looper::pollInner(int)&#x2B;916) (BuildId: 16796d84bdcf185b2112267dbd820c19)&#xA;    runtime.cc:675]   native: #06 pc 0000000000017d84  /system/lib64/libutils.so (android::Looper::pollOnce(int, int*, int*, void**)&#x2B;116) (BuildId: 16796d84bdcf185b2112267dbd820c19)&#xA;    runtime.cc:675]   native: #07 pc 0000000000154668  /system/lib64/libandroid_runtime.so (android::android_os_MessageQueue_nativePollOnce(_JNIEnv*, _jobject*, long, int)&#x2B;48) (BuildId: f73b7e7fab15dc5b96680181e111fb8f)&#xA;    runtime.cc:675]   at android.os.MessageQueue.nativePollOnce(Native method)&#xA;    runtime.cc:675]   at android.os.MessageQueue.next(MessageQueue.java:337)&#xA;    runtime.cc:675]   at android.os.Looper.loopOnce(Looper.java:168)&#xA;    runtime.cc:675]   at android.os.Looper.loop(Looper.java:299)&#xA;    runtime.cc:675]   at android.app.ActivityThread.main(ActivityThread.java:8250)&#xA;    runtime.cc:675]   at java.lang.reflect.Method.invoke(Native method)&#xA;    runtime.cc:675]   at com.android.internal.os.RuntimeInit$MethodAndArgsCaller.run(RuntimeInit.java:556)&#xA;    runtime.cc:675]   at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:1045)&#xA;    runtime.cc:675] &#xA;    runtime.cc:675] "Signal Catcher" prio=10 tid=4 WaitingInMainSignalCatcherLoop&#xA;    runtime.cc:675]   | group="" sCount=1 ucsCount=0 flags=1 obj=0x13340270 self=0xb400007b1f611800&#xA;    runtime.cc:675]   | sysTid=3247 nice=-20 cgrp=default sched=0/0 handle=0x7b209aecb0&#xA;    runtime.cc:675]   | state=S schedstat=( 300521 0 2 ) utm=0 stm=0 core=6 HZ=100&#xA;    runtime.cc:675]   | stack=0x7b208b7000-0x7b208b9000 stackSize=991KB&#xA;    runtime.cc:675]   | held mutexes=&#xA;    runtime.cc:675]   native: #00 pc 00000000000db77c  /apex/com.android.runtime/lib64/bionic/libc.so (__rt_sigtimedwait&#x2B;12) (BuildId: 94065bf91428f6ae9fb310c478171302)&#xA;    runtime.cc:675]   native: #01 pc 000000000009a1b8  /apex/com.android.runtime/lib64/bionic/libc.so (sigwait64&#x2B;92) (BuildId: 94065bf91428f6ae9fb310c478171302)&#xA;    runtime.cc:675]   native: #02 pc 000000000057420c  /apex/com.android.art/lib64/libart.so (art::SignalCatcher::WaitForSignal(art::Thread*, art::SignalSet&amp;)&#x2B;108) (BuildId: 56e704c544e6c624201be2ab4933e853)&#xA;    runtime.cc:675]   native: #03 pc 0000000000573e1c  /apex/com.android.art/lib64/libart.so (art::SignalCatcher::Run(void*)&#x2B;228) (BuildId: 56e704c544e6c624201be2ab4933e853)&#xA;    runtime.cc:675]   native: #04 pc 00000000000efb14  /apex/com.android.runtime/lib64/bionic/libc.so (__pthread_start(void*)&#x2B;264) (BuildId: 94065bf91428f6ae9fb310c478171302)&#xA;    runtime.cc:675]   native: #05 pc 000000000008c35c  /apex/com.android.runtime/lib64/bionic/libc.so (__start_thread&#x2B;68) (BuildId: 94065bf91428f6ae9fb310c478171302)&#xA;    runtime.cc:675]   (no managed stack frames)&#xA;    runtime.cc:675] &#xA;    runtime.cc:675] "perfetto_hprof_listener" prio=10 tid=7 Native (still starting up)&#xA;    runtime.cc:675]   | group="" sCount=1 ucsCount=0 flags=1 obj=0x0 self=0xb400007b138a8800&#xA;    runtime.cc:675]   | sysTid=3248 nice=-20 cgrp=default sched=0/0 handle=0x7b208b0cb0&#xA;    runtime.cc:675]   | state=S schedstat=( 175052 0 3 ) utm=0 stm=0 core=6 HZ=100&#xA;A/e.androidplaye: runtime.cc:675]   | stack=0x7b207b9000-0x7b207bb000 stackSize=991KB&#xA;    runtime.cc:675]   | held mutexes=&#xA;    runtime.cc:675]   native: #00 pc 00000000000daad8  /apex/com.android.runtime/lib64/bionic/libc.so (read&#x2B;8) (BuildId: 94065bf91428f6ae9fb310c478171302)&#xA;    runtime.cc:675]   native: #01 pc 000000000001d840  /apex/com.android.art/lib64/libperfetto_hprof.so (void* std::__1::__thread_proxy >, ArtPlugin_Initialize::$_34> >(void*)&#x2B;260) (BuildId: d60314cb99f035c98d20ab286d52fc6d)&#xA;    runtime.cc:675]   native: #02 pc 00000000000efb14  /apex/com.android.runtime/lib64/bionic/libc.so (__pthread_start(void*)&#x2B;264) (BuildId: 94065bf91428f6ae9fb310c478171302)&#xA;    runtime.cc:675]   native: #03 pc 000000000008c35c  /apex/com.android.runtime/lib64/bionic/libc.so (__start_thread&#x2B;68) (BuildId: 94065bf91428f6ae9fb310c478171302)&#xA;    runtime.cc:675]   (no managed stack frames)&#xA;    runtime.cc:675] &#xA;    runtime.cc:675] "ADB-JDWP Connection Control Thread" prio=10 tid=8 WaitingInMainDebuggerLoop&#xA;    runtime.cc:675]   | group="" sCount=1 ucsCount=0 flags=1 obj=0x133402e8 self=0xb400007b1f64d800&#xA;    runtime.cc:675]   | sysTid=3249 nice=-20 cgrp=default sched=0/0 handle=0x7b207b2cb0&#xA;    runtime.cc:675]   | state=S schedstat=( 935055 0 13 ) utm=0 stm=0 core=4 HZ=100&#xA;    runtime.cc:675]   | stack=0x7b206bb000-0x7b206bd000 stackSize=991KB&#xA;    runtime.cc:675]   | held mutexes=&#xA;    runtime.cc:675]   native: #00 pc 00000000000dbe3c  /apex/com.android.runtime/lib64/bionic/libc.so (__ppoll&#x2B;12) (BuildId: 94065bf91428f6ae9fb310c478171302)&#xA;    runtime.cc:675]   native: #01 pc 00000000000973b4  /apex/com.android.runtime/lib64/bionic/libc.so (poll&#x2B;96) (BuildId: 94065bf91428f6ae9fb310c478171302)&#xA;    runtime.cc:675]   native: #02 pc 00000000000099e4  /apex/com.android.art/lib64/libadbconnection.so (adbconnection::AdbConnectionState::RunPollLoop(art::Thread*)&#x2B;724) (BuildId: c4c03b03ed50414e876ae23cd04eae7e)&#xA;    runtime.cc:675]   native: #03 pc 00000000000080ac  /apex/com.android.art/lib64/libadbconnection.so (adbconnection::CallbackFunction(void*)&#x2B;1320) (BuildId: c4c03b03ed50414e876ae23cd04eae7e)&#xA;    runtime.cc:675]   native: #04 pc 00000000000efb14  /apex/com.android.runtime/lib64/bionic/libc.so (__pthread_start(void*)&#x2B;264) (BuildId: 94065bf91428f6ae9fb310c478171302)&#xA;    runtime.cc:675]   native: #05 pc 000000000008c35c  /apex/com.android.runtime/lib64/bionic/libc.so (__start_thread&#x2B;68) (BuildId: 94065bf91428f6ae9fb310c478171302)&#xA;    runtime.cc:675]   (no managed stack frames)&#xA;    runtime.cc:675] &#xA;    runtime.cc:675] "Jit thread pool worker thread 0" prio=5 tid=9 Native&#xA;    runtime.cc:675]   | group="" sCount=1 ucsCount=0 flags=1 obj=0x13340360 self=0xb400007b138c4000&#xA;    runtime.cc:675]   | sysTid=3250 nice=9 cgrp=default sched=0/0 handle=0x7b206b4cb0&#xA;    runtime.cc:675]   | state=S schedstat=( 1384418878 710723029 1368 ) utm=118 stm=20 core=1 HZ=100&#xA;    runtime.cc:675]   | stack=0x7b205b5000-0x7b205b7000 stackSize=1023KB&#xA;    runtime.cc:675]   | held mutexes=&#xA;    runtime.cc:675]   native: #00 pc 0000000000086f90  /apex/com.android.runtime/lib64/bionic/libc.so (syscall&#x2B;32) (BuildId: 94065bf91428f6ae9fb310c478171302)&#xA;    runtime.cc:675]   native: #01 pc 000000000047cc80  /apex/com.android.art/lib64/libart.so (art::ConditionVariable::WaitHoldingLocks(art::Thread*)&#x2B;140) (BuildId: 56e704c544e6c624201be2ab4933e853)&#xA;    runtime.cc:675]   native: #02 pc 000000000047cb18  /apex/com.android.art/lib64/libart.so (art::ThreadPool::GetTask(art::Thread*)&#x2B;120) (BuildId: 56e704c544e6c624201be2ab4933e853)&#xA;    runtime.cc:675]   native: #03 pc 0000000000619810  /apex/com.android.art/lib64/libart.so (art::ThreadPoolWorker::Run()&#x2B;136) (BuildId: 56e704c544e6c624201be2ab4933e853)&#xA;    runtime.cc:675]   native: #04 pc 00000000006196f0  /apex/com.android.art/lib64/libart.so (art::ThreadPoolWorker::Callback(void*)&#x2B;160) (BuildId: 56e704c544e6c624201be2ab4933e853)&#xA;A/e.androidplaye: runtime.cc:675]   native: #05 pc 00000000000efb14  /apex/com.android.runtime/lib64/bionic/libc.so (__pthread_start(void*)&#x2B;264) (BuildId: 94065bf91428f6ae9fb310c478171302)&#xA;    runtime.cc:675]   native: #06 pc 000000000008c35c  /apex/com.android.runtime/lib64/bionic/libc.so (__start_thread&#x2B;68) (BuildId: 94065bf91428f6ae9fb310c478171302)&#xA;    runtime.cc:675]   (no managed stack frames)&#xA;    runtime.cc:675] &#xA;    runtime.cc:675] "HeapTaskDaemon" prio=5 tid=10 Native&#xA;    runtime.cc:675]   | group="" sCount=1 ucsCount=0 flags=1 obj=0x13340d60 self=0xb400007b138d5800&#xA;    runtime.cc:675]   | sysTid=3256 nice=4 cgrp=default sched=0/0 handle=0x7b205aecb0&#xA;    runtime.cc:675]   | state=S schedstat=( 12936736517 2503386925 3722 ) utm=1074 stm=219 core=4 HZ=100&#xA;    runtime.cc:675]   | stack=0x7b204ab000-0x7b204ad000 stackSize=1039KB&#xA;    runtime.cc:675]   | held mutexes=&#xA;    runtime.cc:675]   native: #00 pc 0000000000086f90  /apex/com.android.runtime/lib64/bionic/libc.so (syscall&#x2B;32) (BuildId: 94065bf91428f6ae9fb310c478171302)&#xA;    runtime.cc:675]   native: #01 pc 000000000047cc80  /apex/com.android.art/lib64/libart.so (art::ConditionVariable::WaitHoldingLocks(art::Thread*)&#x2B;140) (BuildId: 56e704c544e6c624201be2ab4933e853)&#xA;    runtime.cc:675]   native: #02 pc 000000000056bbb8  /apex/com.android.art/lib64/libart.so (art::gc::Heap::TrimIndirectReferenceTables(art::Thread*)&#x2B;1364) (BuildId: 56e704c544e6c624201be2ab4933e853)&#xA;    runtime.cc:675]   native: #03 pc 000000000056b468  /apex/com.android.art/lib64/libart.so (art::gc::Heap::Trim(art::Thread*)&#x2B;68) (BuildId: 56e704c544e6c624201be2ab4933e853)&#xA;    runtime.cc:675]   native: #04 pc 000000000056b3cc  /apex/com.android.art/lib64/libart.so (art::gc::Heap::HeapTrimTask::Run(art::Thread*)&#x2B;32) (BuildId: 56e704c544e6c624201be2ab4933e853)&#xA;    runtime.cc:675]   native: #05 pc 000000000046ce28  /apex/com.android.art/lib64/libart.so (art::gc::TaskProcessor::RunAllTasks(art::Thread*)&#x2B;56) (BuildId: 56e704c544e6c624201be2ab4933e853)&#xA;    runtime.cc:675]   at dalvik.system.VMRuntime.runHeapTasks(Native method)&#xA;    runtime.cc:675]   at java.lang.Daemons$HeapTaskDaemon.runInternal(Daemons.java:609)&#xA;    runtime.cc:675]   at java.lang.Daemons$Daemon.run(Daemons.java:140)&#xA;    runtime.cc:675]   at java.lang.Thread.run(Thread.java:1012)&#xA;    runtime.cc:675] &#xA;    runtime.cc:675] "ReferenceQueueDaemon" prio=5 tid=11 Waiting&#xA;    runtime.cc:675]   | group="" sCount=1 ucsCount=0 flags=1 obj=0x133403d8 self=0xb400007b138d7400&#xA;    runtime.cc:675]   | sysTid=3259 nice=4 cgrp=default sched=0/0 handle=0x7b204a4cb0&#xA;    runtime.cc:675]   | state=S schedstat=( 2230226662 207087138 1228 ) utm=26 stm=196 core=4 HZ=100&#xA;    runtime.cc:675]   | stack=0x7b203a1000-0x7b203a3000 stackSize=1039KB&#xA;    runtime.cc:675]   | held mutexes=&#xA;    runtime.cc:675]   native: #00 pc 0000000000086f90  /apex/com.android.runtime/lib64/bionic/libc.so (syscall&#x2B;32) (BuildId: 94065bf91428f6ae9fb310c478171302)&#xA;    runtime.cc:675]   native: #01 pc 000000000047cc80  /apex/com.android.art/lib64/libart.so (art::ConditionVariable::WaitHoldingLocks(art::Thread*)&#x2B;140) (BuildId: 56e704c544e6c624201be2ab4933e853)&#xA;    runtime.cc:675]   native: #02 pc 0000000000486588  /apex/com.android.art/lib64/libart.so (art::Monitor::Wait(art::Thread*, art::ObjPtr, long, int, bool, art::ThreadState)&#x2B;2520) (BuildId: 56e704c544e6c624201be2ab4933e853)&#xA;    runtime.cc:675]   at java.lang.Object.wait(Native method)&#xA;    runtime.cc:675]   - waiting on &lt;0x0483c441> (a java.lang.Class)&#xA;    runtime.cc:675]   at java.lang.Object.wait(Object.java:442)&#xA;    runtime.cc:675]   at java.lang.Object.wait(Object.java:568)&#xA;    runtime.cc:675]   at java.lang.Daemons$ReferenceQueueDaemon.runInternal(Daemons.java:232)&#xA;    runtime.cc:675]   - locked &lt;0x0483c441> (a java.lang.Class)&#xA;    runtime.cc:675]   at java.lang.Daemons$Daemon.run(Daemons.java:140)&#xA;    runtime.cc:675]   at java.lang.Thread.run(Thread.java:1012)&#xA;    runtime.cc:675] &#xA;...(this part i missed because so big)&#xA;W/e.androidplaye: Suspending all threads took: 10.935ms&#xA;A/e.androidplaye: runtime.cc:683] JNI DETECTED ERROR IN APPLICATION: thread Thread[2,tid=3420,Native,Thread*=0xb400007bd4470c00,peer=0x12cc1510,"Thread-8687"] using JNIEnv* from thread Thread[3,tid=3419,Native,Thread*=0xb400007aadc2e400,peer=0x12d00000,"Thread-8688"]&#xA;    runtime.cc:683]     in call to CallVoidMethodV&#xA;A/libc: Fatal signal 6 (SIGABRT), code -1 (SI_QUEUE) in tid 3420 (Thread-8687), pid 3241 (e.androidplayer)&#xA;</void></void></void></void></void></void></void>

    &#xA;

  • 9 Ways to Customise Your Matomo Like a Pro

    5 octobre 2022, par Erin

    Matomo is a feature-rich web analytics platform. As such, it has many layers of depth — core features, extra plug-ins, custom dimensions, reports, extensions and integrations. 

    Most of the product elements you see can be personalised and customised to your needs with minimal restrictions. However, this breadth of choice can be overlooked by new users. 

    In this post, we explain how to get the most out of Matomo with custom reports, dashboards, dimensions and even app design. 

    How to customise your Matomo web analytics

    To make major changes to Matomo (e.g., create custom dashboards or install new plugins), you’ll have to be a Matomo Super User (a.k.a. The Admin). Super Users can also grant administrator permissions to others so that more people could customise your Matomo deployment. 

    Most feature-related customisations (e.g. configuring a custom report, adding custom goal tracking, etc.) can be done by all users. 

    With the above in mind, here’s how you can tweak Matomo to better serve your website analytics needs : 

    1. Custom dashboards

    Matomo Customisable Dashboard and Widgets

    Dashboards provide a panorama view of all the collected website statistics. We display different categories of stats and KPIs as separate widgets — a standalone module you can also customise. 

    On your dashboard, you can change the type, position and number of widgets on display. This is an easy way to create separate dashboard views for different projects, clients or team members. Rather than a one-size-fits-all dashboard, a custom dashboard designed for a specific role or business unit will increase data-driven decision-making and efficiency across the business.

    You can create a new dashboard view in a few clicks. Then select a preferred layout — a split-page view or multi columns. Next, populate the new dashboard area with preferred widgets showing :

    Or code a custom widget area to pull specific website stats or other reporting data you need. Once you are done, arrange everything with our drag-and-drop functionality. 

    Matomo Widgets

    Popular feature use cases

    • Personalised website statistics layout for convenient viewing 
    • Simplified analytics dashboards for the line of business leaders/stakeholders 
    • Project- or client-specific dashboards for easy report sharing 

    Read more about customising Matomo dashboards and widget areas

    2. Custom reports

    Matomo Custom Reports

    As the name implies, Custom Reports widget allows you to mesh any of the dimensions and metrics collected by Matomo into a custom website traffic analysis. Custom reports save users time by providing specific data needed in one view so there is no need to jump back and forth between multiple reports or toggle through a report to find data.

    For each custom report, you can select up to three dimensions and then apply additional quantitative measurements (metrics) to drill down into the data.

    For example, if you want to closely observe mobile conversion rates in one market, you can create the following custom report :

    • Dimensions : User Type (registered), Device type (mobile), Location (France)
    • Metrics : Visits, Conversion Rate, Revenue, Avg. Generation Time.

    Custom Report widget is available within Matomo Cloud and as a plugin for Matomo On-Premise.

    &lt;script type=&quot;text/javascript&quot;&gt;<br />
           if ('function' === typeof window.playMatomoVideo){<br />
           window.playMatomoVideo(&quot;custom_reports&quot;, &quot;#custom_reports&quot;)<br />
           } else {<br />
           document.addEventListener(&quot;DOMContentLoaded&quot;, function() { window.playMatomoVideo(&quot;custom_reports&quot;, &quot;#custom_reports&quot;); });<br />
           }<br />
      &lt;/script&gt;

    Popular feature use cases

    • Campaign-specific reporting to better understand the impact of different promo strategies 
    • Advanced event tracking for conversion optimization 
    • Market segmentation reports to analyse different audience cohorts 

    Read more about creating and analysing Custom Reports.

    3. Custom widgets

    Matomo Customisable Widgets

    We realise that our users have different degrees of analytics knowledge. Some love in-depth reporting dimensions and multi-row reporting tables. Others just want to see essential stats. 

    To delight both the pros and the novice users, we’ve created widgets — reporting sub-modules you can add, delete or rearrange in a few clicks. Essentially, a widget is a slice of a dashboard area you can populate with extra information. 

    You can add pre-made custom widgets to Matomo or develop your own widget to display custom reports or even external data (e.g., offline sales volume). At the same time, you can also embed Matomo widgets into other applications (e.g., a website CMS or corporate portal).

    Popular feature use cases

    • Display main goals (e.g., new trial sign-ups) on the main dashboard for greater visibility 
    • Highlight cost-per-conversion reporting by combining goals and conversion data to keep your budgets in check 
    • Run omnichannel eCommerce analytics (with embedded offline sales data) to get a 360-degree view into your operations 

    Read more about creating widgets in Matomo (beginner’s guide)

    4. Custom dimensions 

    Matomo Custom Dimensions

    Dimensions describe the characteristics of reported data. Think of them as “filters” — a means to organise website analytics data by a certain parameter such as “Browser”, “Country”, “Device Type”, “User Type” and many more. 

    Custom Dimensions come in handy for all sorts of segmentation reports. For example, comparing conversion rates between registered and guest users. Or tracking revenue by device type and location. 

    For convenience, we’ve grouped Custom Dimensions in two categories :

    Visit dimensions. These associate metadata about a user with Visitor profiles — a summary of different knowledge you have about your audience. Reports for Visit scoped custom dimensions are available in the Visitors section of your dashboard. 

    Action dimensions. These segment users by specific actions tracked by Matomo such as pageviews, events completion, downloads, form clicks, etc. When configuring Custom Dimensions, you can select among pre-defined action types or code extra action dimensions. Action scoped custom dimensions are available in the Behaviours section of Matomo. 

    Depending on your Matomo version, you can apply 5 – 15 custom dimensions to reports. 

    Important : Since you can’t delete dimensions (only deactivate them), think about your use case first. Custom Dimensions each have their own dedicated reports page on your Matomo dashboard. 

    Popular custom dimension use cases among users :

    • Segmenting reports by users’ screen resolution size to understand how your website performs on different devices
    • Monitor conversion rates for different page types to determine your best-performing assets 

    Read more about creating, tracking and managing Custom Dimensions

    5. Custom scheduled reports

    Manually sending reports can be time consuming, especially if you have multiple clients or provide reports to numerous stakeholders. Custom scheduled reports remove this manual process to improve efficiency and ensure timely distribution of data to relevant users.

    Any report in Matomo (default or custom) can be shared with others by email as a PDF file, HTML content or as an attached CSV document. 

    You can customise which data you want to send to different people — your colleagues, upper management, clients or other company divisions. Then set up the frequency of email dispatches and Matomo will do the rest. 

    Auto-scheduling an email report is easy. Name your report, select a Segment (aka custom or standard report), pick time, file format and sender. 

    Matomo Schedule Reports

    You can also share links to Matomo reports as text messages, if you are using ASPSMS or Clockwork SMS

    Popular feature use cases

    • Convenient stakeholder reporting on key website KPIs 
    • Automated client updates to keep clients informed and reduce workload 
    • Easy data downloads for doing custom analysis with business intelligence tools 

    Read more about email reporting features in Matomo

    6. Custom alerts

    Matomo Custom Alerts

    Custom Alerts is a Matomo plugin for keeping you updated on the most important analytics events. Unlike Custom Reports, which provide a complete or segmented analytics snapshot, alerts are better suited for tracking individual events. For example, significant traffic increases from a specific channel, new 404 pages or major goal achievement (e.g., hitting 1,000 sales in a week). 

    Custom Alerts are a convenient way to keep your finger on the pulse of your site so you can quickly remedy an issue or get updated on reaching a crucial KPI promptly. You can receive custom alerts via email or text message in a matter of minutes.

    To avoid flooding your inbox with alerts, we recommend reserving Custom Alerts for a select few use cases (3 to 5) and schedule custom Email Reports to receive general web page analytics. 

    Popular custom alerts use cases among users :

    • Monitor sudden drops in revenue to investigate the cause behind them and solve any issues promptly 
    • Get notified of traffic spikes or sudden dips to better manage your website’s technical performance 

    Read more about creating and managing Custom Alerts

    7. Goals

    Matomo Customisable Goal Funnels

    Goals feature helps you better understand how your website performs on certain business objectives such as lead generation, online sales or content discovery. A goal is a quantifiable action you want to measure (e.g., a specific page visit, form submission or a file download). 

    When combined together, Goals make up your sales funnel — a series of specific actions you expect users to complete in order to convert. 

    Goals-setting and Funnel Analytics are a powerful, customisable combo for understanding how people navigate your website ; what makes them take action or, on the contrary, lose interest and bounce off. 

    On Matomo, you can simultaneously track multiple goals, monitor multiple conversions per one visit (e.g., when one user requests two content downloads) and assign revenue targets to specific goals.

    &lt;script type=&quot;text/javascript&quot;&gt;<br />
           if ('function' === typeof window.playMatomoVideo){<br />
           window.playMatomoVideo(&quot;goals&quot;, &quot;#goals&quot;)<br />
           } else {<br />
           document.addEventListener(&quot;DOMContentLoaded&quot;, function() { window.playMatomoVideo(&quot;goals&quot;, &quot;#goals&quot;); });<br />
           }<br />
      &lt;/script&gt;

    Separately, Matomo Cloud users also get access to a premium Funnels feature and Multi Channel Conversion Attribution. On-Premises Matomo users can get both as paid plugins via our Marketplace.

    Popular goal tracking use cases among users :

    • Tracking newsletter subscription to maximise subscriber growth 
    • Conversion tracking for gated content (e.g., eBooks) to understand how each asset performs 
    • Analysing the volume of job applications per post to better interpret your HR marketing performance 

    Read more about creating and managing Goals in Matomo.

    8. Themes

    Matomo On-Premise Customisable Themes

    Want to give your Matomo app a distinctive visual flair ? Pick a new free theme for your On-Premises installation. Minimalistic, dark or classic — our community created six different looks that other Matomo users can download and install in a few clicks. 

    If you have some HTML/CSS/JS knowledge, you can also design your own Matomo theme. Since Matomo is an open-source project, we don’t restrict interface customisation and always welcome creativity from our users.

    Read more about designing your own Matomo theme (developer documentation).

    9. White labelling

    Matomo white label options

    Matomo is one of the few website analytics tools to support white labelling. White labelling means that you can distribute our product to others under your brand. 

    For example, as a web design agency, you can delight customers with pre-installed GDPR-friendly website analytics. Marketing services providers, in turn, can present their clients with embedded reporting widgets, robust funnel analytics and 100% unsampled data. 

    Apart from selecting a custom theme, you can also align Matomo with your brand by :

    • Customising product name
    • Using custom header/font colours 
    • Change your tracking endpoint
    • Remove links to Matomo.org

    To streamline Matomo customisation and set-up, we developed a White Label plug-in. It provides a convenient set of controls for changing your Matomo deployment and distributing access rights to other users or sharing embedded Matomo widgets). 

    Read more about white labelling Matomo

    Learning more about Matomo 

    Matomo has an ever-growing list of features, ranging from standard website tracking controls to unique conversion rate optimisation tools (heatmaps, media analytics, user cohorts and more).

    To learn more about Matomo features you can check our free video web analytics training series where we cover the basics. For feature-specific tips, tricks and configurations, browse our video content or written guides

  • How HSBC and ING are transforming banking with AI

    9 novembre 2024, par Daniel Crough — Banking and Financial Services, Featured Banking Content

    We recently partnered with FinTech Futures to produce an exciting webinar discussing how analytics leaders from two global banks are using AI to protect customers, streamline operations, and support environmental goals.

    Watch the on-demand webinar : Advancing analytics maturity.

    By providing your email and clicking “submit”, you agree to receive direct marketing materials relating to Matomo products and services, surveys, information about events, publications and promotions. You can unsubscribe at any time by clicking the opt-out link provided in each communication. We will process your personal information in accordance with our Privacy Policy.

    &lt;script&gt;document.getElementById( &quot;ak_js_3&quot; ).setAttribute( &quot;value&quot;, ( new Date() ).getTime() );&lt;/script&gt;

    &lt;script&gt;<br />
    gform.initializeOnLoaded( function() {gformInitSpinner( 71, 'https://matomo.org/wp-content/plugins/gravityforms/images/spinner.svg', true );jQuery('#gform_ajax_frame_71').on('load',function(){var contents = jQuery(this).contents().find('*').html();var is_postback = contents.indexOf('GF_AJAX_POSTBACK') &gt;= 0;if(!is_postback){return;}var form_content = jQuery(this).contents().find('#gform_wrapper_71');var is_confirmation = jQuery(this).contents().find('#gform_confirmation_wrapper_71').length &gt; 0;var is_redirect = contents.indexOf('gformRedirect(){') &gt;= 0;var is_form = form_content.length &gt; 0 &amp;&amp; ! is_redirect &amp;&amp; ! is_confirmation;var mt = parseInt(jQuery('html').css('margin-top'), 10) + parseInt(jQuery('body').css('margin-top'), 10) + 100;if(is_form){jQuery('#gform_wrapper_71').html(form_content.html());if(form_content.hasClass('gform_validation_error')){jQuery('#gform_wrapper_71').addClass('gform_validation_error');} else {jQuery('#gform_wrapper_71').removeClass('gform_validation_error');}setTimeout( function() { /* delay the scroll by 50 milliseconds to fix a bug in chrome */  }, 50 );if(window['gformInitDatepicker']) {gformInitDatepicker();}if(window['gformInitPriceFields']) {gformInitPriceFields();}var current_page = jQuery('#gform_source_page_number_71').val();gformInitSpinner( 71, 'https://matomo.org/wp-content/plugins/gravityforms/images/spinner.svg', true );jQuery(document).trigger('gform_page_loaded', [71, current_page]);window['gf_submitting_71'] = false;}else if(!is_redirect){var confirmation_content = jQuery(this).contents().find('.GF_AJAX_POSTBACK').html();if(!confirmation_content){confirmation_content = contents;}setTimeout(function(){jQuery('#gform_wrapper_71').replaceWith(confirmation_content);jQuery(document).trigger('gform_confirmation_loaded', [71]);window['gf_submitting_71'] = false;wp.a11y.speak(jQuery('#gform_confirmation_message_71').text());}, 50);}else{jQuery('#gform_71').append(contents);if(window['gformRedirect']) {gformRedirect();}}jQuery(document).trigger(&quot;gform_pre_post_render&quot;, [{ formId: &quot;71&quot;, currentPage: &quot;current_page&quot;, abort: function() { this.preventDefault(); } }]);                if (event.defaultPrevented) {                return;         }        const gformWrapperDiv = document.getElementById( &quot;gform_wrapper_71&quot; );        if ( gformWrapperDiv ) {            const visibilitySpan = document.createElement( &quot;span&quot; );            visibilitySpan.id = &quot;gform_visibility_test_71&quot;;            gformWrapperDiv.insertAdjacentElement( &quot;afterend&quot;, visibilitySpan );        }        const visibilityTestDiv = document.getElementById( &quot;gform_visibility_test_71&quot; );        let postRenderFired = false;                function triggerPostRender() {            if ( postRenderFired ) {                return;            }            postRenderFired = true;            jQuery( document ).trigger( 'gform_post_render', [71, current_page] );            gform.utils.trigger( { event: 'gform/postRender', native: false, data: { formId: 71, currentPage: current_page } } );            if ( visibilityTestDiv ) {                visibilityTestDiv.parentNode.removeChild( visibilityTestDiv );            }        }        function debounce( func, wait, immediate ) {            var timeout;            return function() {                var context = this, args = arguments;                var later = function() {                    timeout = null;                    if ( !immediate ) func.apply( context, args );                };                var callNow = immediate &amp;&amp; !timeout;                clearTimeout( timeout );                timeout = setTimeout( later, wait );                if ( callNow ) func.apply( context, args );            };        }        const debouncedTriggerPostRender = debounce( function() {            triggerPostRender();        }, 200 );        if ( visibilityTestDiv &amp;&amp; visibilityTestDiv.offsetParent === null ) {            const observer = new MutationObserver( ( mutations ) =&gt; {                mutations.forEach( ( mutation ) =&gt; {                    if ( mutation.type === 'attributes' &amp;&amp; visibilityTestDiv.offsetParent !== null ) {                        debouncedTriggerPostRender();                        observer.disconnect();                    }                });            });            observer.observe( document.body, {                attributes: true,                childList: false,                subtree: true,                attributeFilter: [ 'style', 'class' ],            });        } else {            triggerPostRender();        }    } );} );<br />
    &lt;/script&gt;

    Meet the expert panel

    Roshini Johri heads ESG Analytics at HSBC, where she leads AI and remote sensing applications supporting the bank’s net zero goals. Her expertise spans climate tech and financial services, with a focus on scalable analytics solutions.

     

    Marco Li Mandri leads Advanced Analytics Strategy at ING, where he focuses on delivering high-impact solutions and strengthening analytics foundations. His background combines analytics, KYC operations, and AI strategy.

     

    Carmen Soini Tourres works as a Web Analyst Consultant at Matomo, helping financial organisations optimise their digital presence whilst maintaining privacy compliance.

     

    Key findings from the webinar

    The discussion highlighted four essential elements for advancing analytics capabilities :

    1. Strong data foundations matter most

    “It doesn’t matter how good the AI model is. It is garbage in, garbage out,”

    Johri explained. Banks need robust data governance that works across different regulatory environments.

    2. Transform rather than tweak

    Li Mandri emphasised the need to reconsider entire processes :

    “We try to look at the banking domain and processes and try to re-imagine how they should be done with AI.”

    3. Bridge technical and business understanding

    Both leaders stressed the value of analytics translators who understand both technology and business needs.

    “We’re investing in this layer we call product leads,”

    Li Mandri explained. These roles combine technical knowledge with business acumen – a rare but vital skill set.

    4. Consider production costs early

    Moving from proof-of-concept to production requires careful planning. As Johri noted :

    “The scale of doing things in production is quite massive and often doesn’t get accounted for in the cost.”

    This includes :

    • Ongoing monitoring requirements
    • Maintenance needs
    • Regulatory compliance checks
    • Regular model updates

    Real-world applications

    ING’s approach demonstrates how banks can transform their operations through thoughtful AI implementation. Li Mandri shared several areas where the bank has successfully deployed analytics solutions, each benefiting both the bank and its customers.

    Customer experience enhancement

    The bank’s implementation of AI-powered instant loan processing shows how analytics can transform traditional banking.

    “We know AI can make loans instant for the customer, that’s great. Clicking one button and adding a loan, that really changes things,”

    Li Mandri explained. This goes beyond automation – it represents a fundamental shift in how banks serve their customers.

    The system analyses customer data to make rapid lending decisions while maintaining strong risk assessment standards. For customers, this means no more lengthy waiting periods or complex applications. For the bank, it means more efficient resource use and better risk management.

    The bank also uses AI to personalise customer communications.

    “We’re using that to make certain campaigns more personalised, having a certain tone of voice,”

    noted Li Mandri. This particularly resonates with younger customers who expect relevant, personalised interactions from their bank.

    Operational efficiency transformation

    ING’s approach to Know Your Customer (KYC) processes shows how AI can transform resource-heavy operations.

    “KYC is a big area of cost for the bank. So we see massive value there, a lot of scale,”

    Li Mandri explained. The bank developed an AI-powered system that :

    • Automates document verification
    • Flags potential compliance issues for human review
    • Maintains consistent standards across jurisdictions
    • Reduces processing time while improving accuracy

    This implementation required careful consideration of regulations across different markets. The bank developed monitoring systems to ensure their AI models maintain high accuracy while meeting compliance standards.

    In the back office, ING uses AI to extract and process data from various documents, significantly reducing manual work. This automation lets staff focus on complex tasks requiring human judgment.

    Sustainable finance initiatives

    ING’s commitment to sustainable banking has driven innovative uses of AI in environmental assessment.

    “We have this ambition to be a sustainable bank. If you want to be a sustainable finance customer, that requires a lot of work to understand who the company is, always comparing against its peers.”

    The bank developed AI models that :

    • Analyse company sustainability metrics
    • Compare environmental performance against industry benchmarks
    • Assess transition plans for high-emission industries
    • Monitor ongoing compliance with sustainability commitments

    This system helps staff evaluate the environmental impact of potential deals quickly and accurately.

    “We are using AI there to help our frontline process customers to see how green that deal might be and then use that as a decision point,”

    Li Mandri noted.

    HSBC’s innovative approach

    Under Johri’s leadership, HSBC has developed several groundbreaking uses of AI and analytics, particularly in environmental monitoring and operational efficiency. Their work shows how banks can use advanced technology to address complex global challenges while meeting regulatory requirements.

    Environmental monitoring through advanced technology

    HSBC uses computer vision and satellite imagery analysis to measure environmental impact with new precision.

    “This is another big research area where we look at satellite images and we do what is called remote sensing, which is the study of a remote area,”

    Johri explained.

    The system provides several key capabilities :

    • Analysis of forest coverage and deforestation rates
    • Assessment of biodiversity impact in specific regions
    • Monitoring of environmental changes over time
    • Measurement of environmental risk in lending portfolios

    “We can look at distant images of forest areas and understand how much percentage deforestation is being caused in that area, and we can then measure our biodiversity impact more accurately,”

    Johri noted. This technology enables HSBC to :

    • Make informed lending decisions
    • Monitor environmental commitments of borrowers
    • Support sustainability-linked lending programmes
    • Provide accurate environmental impact reporting

    Transforming document analysis

    HSBC is tackling one of banking’s most time-consuming challenges : processing vast amounts of documentation.

    “Can we reduce the onus of human having to go and read 200 pages of sustainability reports each time to extract answers ?”

    Johri asked. Their solution combines several AI technologies to make this process more efficient while maintaining accuracy.

    The bank’s approach includes :

    • Natural language processing to understand complex documents
    • Machine learning models to extract relevant information
    • Validation systems to ensure accuracy
    • Integration with existing compliance frameworks

    “We’re exploring solutions to improve our reporting, but we need to do it in a safe, robust and transparent way.”

    This careful balance between efficiency and accuracy exemplifies HSBC’s approach to AI.

    Building future-ready analytics capabilities

    Both banks emphasise that successful analytics requires a comprehensive, long-term approach. Their experiences highlight several critical considerations for financial institutions looking to advance their analytics capabilities.

    Developing clear governance frameworks

    “Understanding your AI risk appetite is crucial because banking is a highly regulated environment,”

    Johri emphasised. Banks need to establish governance structures that :

    • Define acceptable uses for AI
    • Establish monitoring and control mechanisms
    • Ensure compliance with evolving regulations
    • Maintain transparency in AI decision-making

    Creating solutions that scale

    Li Mandri stressed the importance of building systems that grow with the organisation :

    “When you try to prototype a model, you have to take care about the data safety, ethical consideration, you have to identify a way to monitor that model. You need model standard governance.”

    Successful scaling requires :

    • Standard approaches to model development
    • Clear evaluation frameworks
    • Simple processes for model updates
    • Strong monitoring systems
    • Regular performance reviews

    Investing in people and skills

    Both leaders highlighted how important skilled people are to analytics success.

    “Having a good hiring strategy as well as creating that data literacy is really important,”

    Johri noted. Banks need to :

    • Develop comprehensive training programmes
    • Create clear career paths for analytics professionals
    • Foster collaboration between technical and business teams
    • Build internal expertise in emerging technologies

    Planning for the future

    Looking ahead, both banks are preparing for increased regulation and growing demands for transparency. Key focus areas include :

    • Adapting to new privacy regulations
    • Making AI decisions more explainable
    • Improving data quality and governance
    • Strengthening cybersecurity measures

    Practical steps for financial institutions

    The experiences shared by HSBC and ING provide valuable insights for financial institutions at any stage of their analytics journey. Their successes and challenges outline a clear path forward.

    Key steps for success

    Financial institutions looking to enhance their analytics capabilities should :

    1. Start with strong foundations
      • Invest in clear data governance frameworks
      • Set data quality standards
      • Build thorough documentation processes
      • Create transparent data tracking
    2. Think strategically about AI implementation
      • Focus on transformative rather than small changes
      • Consider the full costs of AI projects
      • Build solutions that can grow
      • Balance innovation with risk management
    3. Invest in people and processes
      • Develop internal analytics expertise
      • Create clear paths for career growth
      • Foster collaboration between technical and business teams
      • Build a culture of data literacy
    4. Plan for scale
      • Establish monitoring systems
      • Create governance frameworks
      • Develop standard approaches to model development
      • Stay flexible for future regulatory changes

    Learn more

    Want to hear more insights from these industry leaders ? Watch the complete webinar recording on demand. You’ll learn :

    • Detailed technical insights from both banks
    • Extended Q&A with the speakers
    • Additional case studies and examples
    • Practical implementation advice
     
     

    Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

    Watch the on-demand webinar : Advancing analytics maturity.

    By providing your email and clicking “submit”, you agree to receive direct marketing materials relating to Matomo products and services, surveys, information about events, publications and promotions. You can unsubscribe at any time by clicking the opt-out link provided in each communication. We will process your personal information in accordance with our Privacy Policy.

    &lt;script&gt;document.getElementById( &quot;ak_js_4&quot; ).setAttribute( &quot;value&quot;, ( new Date() ).getTime() );&lt;/script&gt;

    &lt;script&gt;<br />
    gform.initializeOnLoaded( function() {gformInitSpinner( 71, 'https://matomo.org/wp-content/plugins/gravityforms/images/spinner.svg', true );jQuery('#gform_ajax_frame_71').on('load',function(){var contents = jQuery(this).contents().find('*').html();var is_postback = contents.indexOf('GF_AJAX_POSTBACK') &gt;= 0;if(!is_postback){return;}var form_content = jQuery(this).contents().find('#gform_wrapper_71');var is_confirmation = jQuery(this).contents().find('#gform_confirmation_wrapper_71').length &gt; 0;var is_redirect = contents.indexOf('gformRedirect(){') &gt;= 0;var is_form = form_content.length &gt; 0 &amp;&amp; ! is_redirect &amp;&amp; ! is_confirmation;var mt = parseInt(jQuery('html').css('margin-top'), 10) + parseInt(jQuery('body').css('margin-top'), 10) + 100;if(is_form){jQuery('#gform_wrapper_71').html(form_content.html());if(form_content.hasClass('gform_validation_error')){jQuery('#gform_wrapper_71').addClass('gform_validation_error');} else {jQuery('#gform_wrapper_71').removeClass('gform_validation_error');}setTimeout( function() { /* delay the scroll by 50 milliseconds to fix a bug in chrome */  }, 50 );if(window['gformInitDatepicker']) {gformInitDatepicker();}if(window['gformInitPriceFields']) {gformInitPriceFields();}var current_page = jQuery('#gform_source_page_number_71').val();gformInitSpinner( 71, 'https://matomo.org/wp-content/plugins/gravityforms/images/spinner.svg', true );jQuery(document).trigger('gform_page_loaded', [71, current_page]);window['gf_submitting_71'] = false;}else if(!is_redirect){var confirmation_content = jQuery(this).contents().find('.GF_AJAX_POSTBACK').html();if(!confirmation_content){confirmation_content = contents;}setTimeout(function(){jQuery('#gform_wrapper_71').replaceWith(confirmation_content);jQuery(document).trigger('gform_confirmation_loaded', [71]);window['gf_submitting_71'] = false;wp.a11y.speak(jQuery('#gform_confirmation_message_71').text());}, 50);}else{jQuery('#gform_71').append(contents);if(window['gformRedirect']) {gformRedirect();}}jQuery(document).trigger(&quot;gform_pre_post_render&quot;, [{ formId: &quot;71&quot;, currentPage: &quot;current_page&quot;, abort: function() { this.preventDefault(); } }]);                if (event.defaultPrevented) {                return;         }        const gformWrapperDiv = document.getElementById( &quot;gform_wrapper_71&quot; );        if ( gformWrapperDiv ) {            const visibilitySpan = document.createElement( &quot;span&quot; );            visibilitySpan.id = &quot;gform_visibility_test_71&quot;;            gformWrapperDiv.insertAdjacentElement( &quot;afterend&quot;, visibilitySpan );        }        const visibilityTestDiv = document.getElementById( &quot;gform_visibility_test_71&quot; );        let postRenderFired = false;                function triggerPostRender() {            if ( postRenderFired ) {                return;            }            postRenderFired = true;            jQuery( document ).trigger( 'gform_post_render', [71, current_page] );            gform.utils.trigger( { event: 'gform/postRender', native: false, data: { formId: 71, currentPage: current_page } } );            if ( visibilityTestDiv ) {                visibilityTestDiv.parentNode.removeChild( visibilityTestDiv );            }        }        function debounce( func, wait, immediate ) {            var timeout;            return function() {                var context = this, args = arguments;                var later = function() {                    timeout = null;                    if ( !immediate ) func.apply( context, args );                };                var callNow = immediate &amp;&amp; !timeout;                clearTimeout( timeout );                timeout = setTimeout( later, wait );                if ( callNow ) func.apply( context, args );            };        }        const debouncedTriggerPostRender = debounce( function() {            triggerPostRender();        }, 200 );        if ( visibilityTestDiv &amp;&amp; visibilityTestDiv.offsetParent === null ) {            const observer = new MutationObserver( ( mutations ) =&gt; {                mutations.forEach( ( mutation ) =&gt; {                    if ( mutation.type === 'attributes' &amp;&amp; visibilityTestDiv.offsetParent !== null ) {                        debouncedTriggerPostRender();                        observer.disconnect();                    }                });            });            observer.observe( document.body, {                attributes: true,                childList: false,                subtree: true,                attributeFilter: [ 'style', 'class' ],            });        } else {            triggerPostRender();        }    } );} );<br />
    &lt;/script&gt;