Recherche avancée

Médias (1)

Mot : - Tags -/framasoft

Autres articles (97)

  • MediaSPIP 0.1 Beta version

    25 avril 2011, par

    MediaSPIP 0.1 beta is the first version of MediaSPIP proclaimed as "usable".
    The zip file provided here only contains the sources of MediaSPIP in its standalone version.
    To get a working installation, you must manually install all-software dependencies on the server.
    If you want to use this archive for an installation in "farm mode", you will also need to proceed to other manual (...)

  • Personnaliser en ajoutant son logo, sa bannière ou son image de fond

    5 septembre 2013, par

    Certains thèmes prennent en compte trois éléments de personnalisation : l’ajout d’un logo ; l’ajout d’une bannière l’ajout d’une image de fond ;

  • Publier sur MédiaSpip

    13 juin 2013

    Puis-je poster des contenus à partir d’une tablette Ipad ?
    Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir

Sur d’autres sites (9491)

  • Revision 053625e4cd : Add cast to convert double to int Change-Id : I7f63c2940256a5dadf9a29a853809290d

    11 février 2015, par Adrian Grange

    Changed Paths :
     Modify /vp9/encoder/vp9_ratectrl.c



    Add cast to convert double to int

    Change-Id : I7f63c2940256a5dadf9a29a853809290dd9e98ed

  • What does the summary output of the coding with ffmpeg means

    12 novembre 2015, par Jai

    I am working with video comparison using ffmpeg. By Using ffmpeg command I can find the difference between 2 videos. But i want to find the percentage different in 2 videos.
    From the below ffmpeg output how can i found the percentage difference in two videos. Which attribute denote the difference.?

    TaskList: video:530kB audio:0kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 0.266679%
    TaskList: [libx264 @ 0000000002750b00] frame I:2     Avg QP:23.92  size: 29796
    TaskList: [libx264 @ 0000000002750b00] frame P:97    Avg QP:22.97  size:  4477
    TaskList: [libx264 @ 0000000002750b00] frame B:9     Avg QP:28.16  size:  5338
    TaskList: [libx264 @ 0000000002750b00] consecutive B-frames: 83.3% 16.7%  0.0%  0.0%
    TaskList: [libx264 @ 0000000002750b00] mb I  I16..4: 25.7% 37.8% 36.5%
    TaskList: [libx264 @ 0000000002750b00] mb P  I16..4:  1.9%  4.5%  1.0%  P16..4: 26.7%  8.8%  3.8%  0.0%  0.0%    skip:53.3%
    TaskList: [libx264 @ 0000000002750b00] mb B  I16..4:  0.7%  2.4%  2.7%  B16..8: 19.9%  8.8%  2.6%  direct: 4.7%  skip:58.2%  L0:32.3% L1:53.2% BI:14.4%
    TaskList: [libx264 @ 0000000002750b00] 8x8 transform intra:55.1% inter:69.5%
    TaskList: [libx264 @ 0000000002750b00] coded y,uvDC,uvAC intra: 55.6% 70.0% 24.2% inter: 19.8% 26.7% 2.5%
    TaskList: [libx264 @ 0000000002750b00] i16 v,h,dc,p: 25% 44%  5% 27%
    TaskList: [libx264 @ 0000000002750b00] i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 24% 26% 17%  5%  5%  6%  5%  6%  6%
    TaskList: [libx264 @ 0000000002750b00] i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 26% 29% 13%  5%  5%  6%  5%  6%  5%
    TaskList: [libx264 @ 0000000002750b00] i8c dc,h,v,p: 44% 30% 20%  5%
    TaskList: [libx264 @ 0000000002750b00] Weighted P-Frames: Y:6.2% UV:4.1%
    TaskList: [libx264 @ 0000000002750b00] ref P L0: 64.2% 28.5%  5.8%  1.3%  0.1%
    TaskList: [libx264 @ 0000000002750b00] ref B L0: 88.4% 11.6%
    TaskList: [libx264 @ 0000000002750b00] kb/s:1204.25
  • Converting ffmpeg loudnorm first pass dcf summary report output to data.frame R

    23 décembre 2022, par Chris

    Following from operations on a video with ffmpeg, a loudnorm first pass report for purely audio files is produced

    


    names(aud_proc_df)
[1] "in_files" "proc_out" "filter"

cmds_loudness_report <- with(aud_proc_df, sprintf("ffmpeg -hide_banner -i %s -af loudnorm=I=-23:TP=-2:LRA=7:print_format=summary -f null /dev/null 2>&1 | tail -n 12 >> loudness_rpt_all.txt", in_files)) # linux specific notation
lapply(cmds_loudness_report, system)


    


    reading this as a .csv rather than .dcf

    


    loudness_df_csv <- read.csv('loudness_rpt_all.txt', header = FALSE, sep =':')
head(loudness_df_csv)
                 V1                  V2
1  Input Integrated          -24.7 LUFS
2   Input True Peak           -1.6 dBTP
3         Input LRA             17.9 LU
4   Input Threshold          -37.8 LUFS
5 Output Integrated          -23.4 LUFS
6  Output True Peak           -2.0 dBTP
#data
structure(list(V1 = c("Input Integrated", "Input True Peak", 
"Input LRA", "Input Threshold", "Output Integrated", "Output True Peak", 
"Output LRA", "Output Threshold", "Normalization Type", "Target Offset", 
"Input Integrated", "Input True Peak", "Input LRA", "Input Threshold", 
"Output Integrated", "Output True Peak", "Output LRA", "Output Threshold", 
"Normalization Type", "Target Offset"), V2 = c("    -24.7 LUFS", 
"      -1.6 dBTP", "            17.9 LU", "     -37.8 LUFS", 
"   -23.4 LUFS", "     -2.0 dBTP", "           14.8 LU", "    -36.2 LUFS", 
"   Dynamic", "        +0.4 LU", "    -23.9 LUFS", "      +0.2 dBTP", 
"            22.0 LU", "     -37.6 LUFS", "   -23.6 LUFS", "     -2.0 dBTP", 
"           21.9 LU", "    -37.0 LUFS", "   Dynamic", "        +0.6 LU"
)), row.names = c(NA, 20L), class = "data.frame")


    


    then, for column notation portability between win and linux systems

    


    df_names <- unique(loudness_df_csv$V1)
df_names2 <- gsub(' ', '_', df_names)


    


    and then make a data.frame

    


    loudnorm_rpt <- data.frame(loudness_df_csv$V2[which(loudness_df_csv$V1 == df_names[1])], loudness_df_csv$V2[which(loudness_df_csv$V1 == df_names[2])], loudness_df_csv$V2[which(loudness_df_csv$V1 == df_names[3])], loudness_df_csv$V2[which(loudness_df_csv$V1 == df_names[4])], loudness_df_csv$V2[which(loudness_df_csv$V1 == df_names[5])], loudness_df_csv$V2[which(loudness_df_csv$V1 == df_names[6])], loudness_df_csv$V2[which(loudness_df_csv$V1 == df_names[7])], loudness_df_csv$V2[which(loudness_df_csv$V1 == df_names[8])], loudness_df_csv$V2[which(loudness_df_csv$V1 == df_names[9])], loudness_df_csv$V2[which(loudness_df_csv$V1 == df_names[10])])
names(loudnorm_rpt) <- df_names2
rownames(loudnorm_rpt) <- c('A', 'B')


    


    Should I just wrap this in a function or is there a dcf to data.frame function that I've missed ?