Recherche avancée

Médias (9)

Mot : - Tags -/soundtrack

Autres articles (61)

  • Les images

    15 mai 2013
  • Dépôt de média et thèmes par FTP

    31 mai 2013, par

    L’outil MédiaSPIP traite aussi les média transférés par la voie FTP. Si vous préférez déposer par cette voie, récupérez les identifiants d’accès vers votre site MédiaSPIP et utilisez votre client FTP favori.
    Vous trouverez dès le départ les dossiers suivants dans votre espace FTP : config/ : dossier de configuration du site IMG/ : dossier des média déjà traités et en ligne sur le site local/ : répertoire cache du site web themes/ : les thèmes ou les feuilles de style personnalisées tmp/ : dossier de travail (...)

  • Contribute to translation

    13 avril 2011

    You can help us to improve the language used in the software interface to make MediaSPIP more accessible and user-friendly. You can also translate the interface into any language that allows it to spread to new linguistic communities.
    To do this, we use the translation interface of SPIP where the all the language modules of MediaSPIP are available. Just subscribe to the mailing list and request further informantion on translation.
    MediaSPIP is currently available in French and English (...)

Sur d’autres sites (8496)

  • Overcoming Fintech and Finserv’s Biggest Data Analytics Challenges

    13 septembre 2024, par Daniel Crough — Banking and Financial Services, Marketing, Security

    Data powers innovation in financial technology (fintech), from personalized banking services to advanced fraud detection systems. Industry leaders recognize the value of strong security measures and customer privacy. A recent survey highlights this focus, with 72% of finance Chief Risk Officers identifying cybersecurity as their primary concern.

    Beyond cybersecurity, fintech and financial services (finserv) companies are bogged down with massive amounts of data spread throughout disconnected systems. Between this, a complex regulatory landscape and an increasingly tech-savvy and sceptical consumer base, fintech and finserv companies have a lot on their plates.

    How can marketing teams get the information they need while staying focused on compliance and providing customer value ? 

    This article will examine strategies to address common challenges in the finserv and fintech industries. We’ll focus on using appropriate tools, following effective data management practices, and learning from traditional banks’ approaches to similar issues.

    What are the biggest fintech data analytics challenges, and how do they intersect with traditional banking ?

    Recent years have been tough for the fintech industry, especially after the pandemic. This period has brought new hurdles in data analysis and made existing ones more complex. As the market stabilises, both fintech and finserve companies must tackle these evolving data issues.

    Let’s examine some of the most significant data analytics challenges facing the fintech industry, starting with an issue that’s prevalent across the financial sector :

    1. Battling data silos

    In a recent survey by InterSystems, 54% of financial institution leaders said data silos are their biggest barrier to innovation, while 62% said removing silos is their priority data strategy for the next year.

    a graphic highlighting fintech concerns about siloed data

    Data silos segregate data repositories across departments, products and other divisions. This is a major issue in traditional banking and something fintech companies should avoid inheriting at all costs.

    Siloed data makes it harder for decision-makers to view business performance with 360-degree clarity. It’s also expensive to maintain and operationalise and can evolve into privacy and data compliance issues if left unchecked.

    To avoid or remove data silos, develop a data governance framework and centralise your data repositories. Next, simplify your analytics stack into as few integrated tools as possible because complex tech stacks are one of the leading causes of data silos.

    Use an analytics system like Matomo that incorporates web analytics, marketing attribution and CRO testing into one toolkit.

    A screenshot of Matomo web analytics

    Matomo’s support plans help you implement a data system to meet the unique needs of your business and avoid issues like data silos. We also offer data warehouse exporting as a feature to bring all of your web analytics, customer data, support data, etc., into one centralised location.

    Try Matomo for free today, or contact our sales team to discuss support plans.

    2. Compliance with laws and regulations

    A survey by Alloy reveals that 93% of fintech companies find it difficult to meet compliance regulations. The cost of staying compliant tops their list of worries (23%), outranking even the financial hit from fraud (21%) – and this in a year marked by cyber threats.

    a bar chart shows the top concerns of fintech regulation compliance

    Data privacy laws are constantly changing, and the landscape varies across global regions, making adherence even more challenging for fintechs and traditional banks operating in multiple markets. 

    In the US market, companies grapple with regulations at both federal and state levels. Here are some of the state-level legislation coming into effect for 2024-2026 :

    Other countries are also ramping up regional regulations. For instance, Canada has Quebec’s Act Respecting the Protection of Personal Information in the Private Sector and British Columbia’s Personal Information Protection Act (BC PIPA).

    Ignorance of country- or region-specific laws will not stop companies from suffering the consequences of violating them.

    The only answer is to invest in adherence and manage business growth accordingly. Ultimately, compliance is more affordable than non-compliance – not only in terms of the potential fines but also the potential risks to reputation, consumer trust and customer loyalty.

    This is an expensive lesson that fintech and traditional financial companies have had to learn together. GDPR regulators hit CaixaBank S.A, one of Spain’s largest banks, with multiple multi-million Euro fines, and Klarna Bank AB, a popular Swedish fintech company, for €720,000.

    To avoid similar fates, companies should :

    1. Build solid data systems
    2. Hire compliance experts
    3. Train their teams thoroughly
    4. Choose data analytics tools carefully

    Remember, even popular tools like Google Analytics aren’t automatically safe. Find out how Matomo helps you gather useful insights while sticking to rules like GDPR.

    3. Protecting against data security threats

    Cyber threats are increasing in volume and sophistication, with the financial sector becoming the most breached in 2023.

    a bar chart showing the percentage of data breaches per industry from 2021 to 2023
<p>

    The cybersecurity risks will only worsen, with WEF estimating annual cybercrime expenses of up to USD $10.5 trillion globally by 2025, up from USD $3 trillion in 2015.

    While technology brings new security solutions, it also amplifies existing risks and creates new ones. A 2024 McKinsey report warns that the risk of data breaches will continue to increase as the financial industry increasingly relies on third-party data tools and cloud computing services unless they simultaneously improve their security posture.

    The reality is that adopting a third-party data system without taking the proper precautions means adopting its security vulnerabilities.

    In 2023, the MOVEit data breach affected companies worldwide, including financial institutions using its file transfer system. One hack created a global data crisis, potentially affecting the customer data of every company using this one software product.

    The McKinsey report emphasises choosing tools wisely. Why ? Because when customer data is compromised, it’s your company that takes the heat, not the tool provider. As the report states :

    “Companies need reliable, insightful metrics and reporting (such as security compliance, risk metrics and vulnerability tracking) to prove to regulators the health of their security capabilities and to manage those capabilities.”

    Don’t put user or customer data in the hands of companies you can’t trust. Work with providers that care about security as much as you do. With Matomo, you own all of your data, ensuring it’s never used for unknown purposes.

    A screenshot of Matomo visitor reporting

    4. Protecting users’ privacy

    With security threats increasing, fintech companies and traditional banks must prioritise user privacy protection. Users are also increasingly aware of privacy threats and ready to walk away from companies that lose their trust.

    Cisco’s 2023 Data Privacy Benchmark Study reveals some eye-opening statistics :

    • 94% of companies said their customers wouldn’t buy from them if their data wasn’t protected, and 
    • 95% see privacy as a business necessity, not just a legal requirement.

    Modern financial companies must balance data collection and management with increasing privacy demands. This may sound contradictory for companies reliant on dated practices like third-party cookies, but they need to learn to thrive in a cookieless web as customers move to banks and service providers that have strong data ethics.

    This privacy protection journey starts with implementing web analytics ethically from the very first session.

    A graphic showing the four key elements of ethical web analytics: 100% data ownership, respecting user privacy, regulatory compliance and Data transparency

    The most important elements of ethically-sound web analytics in fintech are :

    1. 100% data ownership : Make sure your data isn’t used in other ways by the tools that collect it.
    2. Respecting user privacy : Only collect the data you absolutely need to do your job and avoid personally identifiable information.
    3. Regulatory compliance : Stick with solutions built for compliance to stay out of legal trouble.
    4. Data transparency : Know how your tools use your data and let your customers know how you use it.

    Read our guide to ethical web analytics for more information.

    5. Comparing customer trust across industries 

    While fintech companies are making waves in the financial world, they’re still playing catch-up when it comes to earning customer trust. According to RFI Global, fintech has a consumer trust score of 5.8/10 in 2024, while traditional banking scores 7.6/10.

    a comparison of consumer trust in fintech vs traditional finance

    This trust gap isn’t just about perception – it’s rooted in real issues :

    • Security breaches are making headlines more often.
    • Privacy regulations like GDPR are making consumers more aware of their rights.
    • Some fintech companies are struggling to handle fraud effectively.

    According to the UK’s Payment Systems Regulator, digital banking brands Monzo and Starling had some of the highest fraudulent activity rates in 2022. Yet, Monzo only reimbursed 6% of customers who reported suspicious transactions, compared to 70% for NatWest and 91% for Nationwide.

    So, what can fintech firms do to close this trust gap ?

    • Start with privacy-centric analytics from day one. This shows customers you value their privacy from the get-go.
    • Build and maintain a long-term reputation free of data leaks and privacy issues. One major breach can undo years of trust-building.
    • Learn from traditional banks when it comes to handling issues like fraudulent transactions, identity theft, and data breaches. Prompt, customer-friendly resolutions go a long way.
    • Remember : cutting-edge financial technology doesn’t make up for poor customer care. If your digital bank won’t refund customers who’ve fallen victim to credit card fraud, they’ll likely switch to a traditional bank that will.

    The fintech sector has made strides in innovation, but there’s still work to do in establishing trustworthiness. By focusing on robust security, transparent practices, and excellent customer service, fintech companies can bridge the trust gap and compete more effectively with traditional banks.

    6. Collecting quality data

    Adhering to data privacy regulations, protecting user data and implementing ethical analytics raises another challenge. How can companies do all of these things and still collect reliable, quality data ?

    Google’s answer is using predictive models, but this replaces real data with calculations and guesswork. The worst part is that Google Analytics doesn’t even let you use all of the data you collect in the first place. Instead, it uses something called data sampling once you pass certain thresholds.

    In practice, this means that Google Analytics uses a limited set of your data to calculate reports. We’ve discussed GA4 data sampling at length before, but there are two key problems for companies here :

    1. A sample size that’s too small won’t give you a full representation of your data.
    2. The more visitors that come to your site, the less accurate your reports will become.

    For high-growth companies, data sampling simply can’t keep up. Financial marketers widely recognise the shortcomings of big tech analytics providers. In fact, 80% of them say they’re concerned about data bias from major providers like Google and Meta affecting valuable insights.

    This is precisely why CRO:NYX Digital approached us after discovering Google Analytics wasn’t providing accurate campaign data. We set up an analytics system to suit the company’s needs and tested it alongside Google Analytics for multiple campaigns. In one instance, Google Analytics failed to register 6,837 users in a single day, approximately 9.8% of the total tracked by Matomo.

    In another instance, Google Analytics only tracked 600 visitors over 24 hours, while Matomo recorded nearly 71,000 visitors – an 11,700% discrepancy.

    a data visualisation showing the discrepancy in Matomo's reporting vs Google Analytics

    Financial companies need a more reliable, privacy-centric alternative to Google Analytics that captures quality data without putting users at potential risk. This is why we built Matomo and why our customers love having total control and visibility of their data.

    Unlock the full power of fintech data analytics with Matomo

    Fintech companies face many data-related challenges, so compliant web analytics shouldn’t be one of them. 

    With Matomo, you get :

    • An all-in-one solution that handles traditional web analytics, behavioural analytics and more with strong integrations to minimise the likelihood of data siloing
    • Full compliance with GDPR, CCPA, PIPL and more
    • Complete ownership of your data to minimise cybersecurity risks caused by negligent third parties
    • An abundance of ways to protect customer privacy, like IP address anonymisation and respect for DoNotTrack settings
    • The ability to import data from Google Analytics and distance yourself from big tech
    • High-quality data that doesn’t rely on sampling
    • A tool built with financial analytics in mind

    Don’t let big tech companies limit the power of your data with sketchy privacy policies and counterintuitive systems like data sampling. 

    Start your Matomo free trial or request a demo to unlock the full power of fintech data analytics without putting your customers’ personal information at unnecessary risk.

  • 10 Customer Segments Examples and Their Benefits

    9 mai 2024, par Erin

    Now that companies can segment buyers, the days of mass marketing are behind us. Customer segmentation offers various benefits for marketing, content creation, sales, analytics teams and more. Without customer segmentation, your personalised marketing efforts may fall flat. 

    According to the Twilio 2023 state of personalisation report, 69% of business leaders have increased their investment in personalisation. There’s a key reason for this — customer retention and loyalty directly benefit from personalisation. In fact, 62% of businesses have cited improved customer retention due to personalisation efforts. The numbers don’t lie. 

    Keep reading to learn how customer segments can help you fine-tune your personalised marketing campaigns. This article will give you a better understanding of customer segmentation and real-world customer segment examples. You’ll leave with the knowledge to empower your marketing strategies with effective customer segmentation. 

    What are customer segments ?

    Customer segments are distinct groups of people or organisations with similar characteristics, needs and behaviours. Like different species of plants in a garden, each customer segment has specific needs and care requirements. Customer segments are useful for tailoring personalised marketing campaigns for specific groups.

    Personalised marketing has been shown to have significant benefits — with 56% of consumers saying that a personalised experience would make them become repeat buyers

    Successful marketing teams typically focus on these types of customer segmentation :

    A chart with icons representing the different customer segmentation categories
    1. Geographic segmentation : groups buyers based on their physical location — country, city, region or climate — and language.
    2. Purchase history segmentation : categorises buyers based on their purchasing habits — how often they make purchases — and allows brands to distinguish between frequent, occasional and one-time buyers. 
    3. Product-based segmentation : groups buyers according to the products they prefer or end up purchasing. 
    4. Customer lifecycle segmentation : segments buyers based on where they are in the customer journey. Examples include new, repeat and lapsed buyers. This segmentation category is also useful for understanding the behaviour of loyal buyers and those at risk of churning. 
    5. Technographic segmentation : focuses on buyers’ technology preferences, including device type, browser type, and operating system. 
    6. Channel preference segmentation : helps us understand why buyers prefer to purchase via specific channels — whether online channels, physical stores or a combination of both. 
    7. Value-based segmentation : categorises buyers based on their average purchase value and sensitivity to pricing, for example. This type of segmentation can provide insights into the behaviours of price-conscious buyers and those willing to pay premium prices. 

    Customer segmentation vs. market segmentation

    Customer segmentation and market segmentation are related concepts, but they refer to different aspects of the segmentation process in marketing. 

    Market segmentation is the broader process of dividing the overall market into homogeneous groups. Market segmentation helps marketers identify different groups based on their characteristics or needs. These market segments make it easier for businesses to connect with new buyers by offering relevant products or new features. 

    On the other hand, customer segmentation is used to help you dig deep into the behaviour and preferences of your current customer base. Marketers use customer segmentation insights to create buyer personas. Buyer personas are essential for ensuring your personalised marketing efforts are relevant to the target audience. 

    10 customer segments examples

    Now that you better understand different customer segmentation categories, we’ll provide real-world examples of how customer segmentation can be applied. You’ll be able to draw a direct connection between the segmentation category or categories each example falls under.

    One thing to note is that you’ll want to consider privacy and compliance when you are considering collecting and analysing types of data such as gender, age, income level, profession or personal interests. Instead, you can focus on these privacy-friendly, ethical customer segmentation types :

    1. Geographic location (category : geographic segmentation)

    The North Face is an outdoor apparel and equipment company that relies on geographic segmentation to tailor its products toward buyers in specific regions and climates. 

    For instance, they’ll send targeted advertisements for insulated jackets and snow gear to buyers in colder climates. For folks in seasonal climates, The North Face may send personalised ads for snow gear in winter and ads for hiking or swimming gear in summer. 

    The North Face could also use geographic segmentation to determine buyers’ needs based on location. They can use this information to send targeted ads to specific customer segments during peak ski months to maximise profits.

    2. Preferred language (category : geographic segmentation)

    Your marketing approach will likely differ based on where your customers are and the language they speak. So, with that in mind, language may be another crucial variable you can introduce when identifying your target customers. 

    Language-based segmentation becomes even more important when one of your main business objectives is to expand into new markets and target international customers — especially now that global reach is made possible through digital channels. 

    Coca-Cola’s “Share a Coke” is a multi-national campaign with personalised cans and bottles featuring popular names from countries around the globe. It’s just one example of targeting customers based on language.

    3. Repeat users and loyal customers (category : customer lifecycle segmentation)

    Sephora, a large beauty supply company, is well-known for its Beauty Insider loyalty program. 

    It segments customers based on their purchase history and preferences and rewards their loyalty with gifts, discounts, exclusive offers and free samples. And since customers receive personalised product recommendations and other perks, it incentivises them to remain members of the Beauty Insider program — adding a boost to customer loyalty.

    By creating a memorable customer experience for this segment of their customer base, staying on top of beauty trends and listening to feedback, Sephora is able to keep buyers coming back.

    All customers on the left and their respective segments on the right

    4. New customers (category : customer lifecycle segmentation)

    Subscription services use customer lifecycle segmentation to offer special promotions and trials for new customers. 

    HBO Max is a great example of a real company that excels at this strategy : 

    They offer 40% savings on an annual ad-free plan, which targets new customers who may be apprehensive about the added monthly cost of a recurring subscription.

    This marketing strategy prioritises fostering long-term customer relationships with new buyers to avoid high churn rates. 

    5. Cart abandonment (category : purchase history segmentation)

    With a rate of 85% among US-based mobile users, cart abandonment is a huge issue for ecommerce businesses. One way to deal with this is to segment inactive customers and cart abandoners — those who showed interest by adding products to their cart but haven’t converted yet — and send targeted emails to remind them about their abandoned carts.

    E-commerce companies like Ipsy, for example, track users who have added items to their cart but haven’t followed through on the purchase. The company’s messaging often contains incentives — like free shipping or a limited-time discount — to encourage passive users to return to their carts. 

    Research has found that cart abandonment emails with a coupon code have a high 44.37% average open rate. 

    6. Website activity (category : technographic segmentation)

    It’s also possible to segment customers based on website activity. Now, keep in mind that this is a relatively broad approach ; it covers every interaction that may occur while the customer is browsing your website. As such, it leaves room for many different types of segmentation. 

    For instance, you can segment your audience based on the pages they visited, the elements they interacted with — like CTAs and forms — how long they stayed on each page and whether they added products to their cart. 

    Matomo’s Event Tracking can provide additional context to each website visit and tell you more about the specific interactions that occur, making it particularly useful for segmenting customers based on how they spend their time on your website. 

    Try Matomo for Free

    Get the web insights you need, while respecting user privacy.

    No credit card required

    Amazon segments its customers based on browsing behaviour — recently viewed products and categories, among other things — which, in turn, allows them to improve the customer’s experience and drive sales.

    7. Traffic source (category : channel segmentation) 

    You can also segment your audience based on traffic sources. For example, you can determine if your website visitors arrived through Google and other search engines, email newsletters, social media platforms or referrals. 

    In other words, you’ll create specific audience segments based on the original source. Matomo’s Acquisition feature can provide insights into five different types of traffic sources — search engines, social media, external websites, direct traffic and campaigns — to help you understand how users enter your website.

    You may find that most visitors arrive at your website through social media ads or predominantly discover your brand through search engines. Either way, by learning where they’re coming from, you’ll be able to determine which conversion paths you should prioritise and optimise further. 

    8. Device type (category : technographic segmentation)

    Device type is customer segmentation based on the devices that potential customers may use to access your website and view your content. 

    It’s worth noting that, on a global level, most people (96%) use mobile devices — primarily smartphones — for internet access. So, there’s a high chance that most of your website visitors are coming from mobile devices, too. 

    However, it’s best not to assume anything. Matomo can detect the operating system and the type of device — desktop, mobile device, tablet, console or TV, for example. 

    By introducing the device type variable into your customer segmentation efforts, you’ll be able to determine if there’s a preference for mobile or desktop devices. In return, you’ll have a better idea of how to optimise your website — and whether you should consider developing an app to meet the needs of mobile users.

    Try Matomo for Free

    Get the web insights you need, while respecting user privacy.

    No credit card required

    9. Browser type (category : technographic segmentation)

    Besides devices, another type of segmentation that belongs to the technographic category and can provide valuable insights is browser-related. In this case, you’re tracking the internet browser your customers use. 

    Many browser types are available — including Google Chrome, Microsoft Edge, Safari, Firefox and Brave — and each may display your website and other content differently. 

    So, keeping track of your customers’ preferred choices is important. Otherwise, you won’t be able to fully understand their online experience — or ensure that these browsers are displaying your content properly. 

    Browser type in Matomo

    10. Ecommerce activity (category : purchase history, value based, channel or product based segmentation) 

    Similar to website activity, looking at ecommerce activity can tell your sales teams more about which pages the customer has seen and how they have interacted with them. 

    With Matomo’s Ecommerce Tracking, you’ll be able to keep an eye on customers’ on-site behaviours, conversion rates, cart abandonment, purchased products and transaction data — including total revenue and average order value.

    Considering that the focus is on sales channels — such as your online store — this approach to customer segmentation can help you improve the sales experience and increase profitability. 

    Start implementing these customer segments examples

    With ever-evolving demographics and rapid technological advancements, customer segmentation is increasingly complex. The tips and real-world examples in this article break down and simplify customer segmentation so that you can adapt to your customer base. 

    Customer segmentation lays the groundwork for your personalised marketing campaigns to take off. By understanding your users better, you can effectively tailor each campaign to different segments. 

    If you’re ready to see how Matomo can elevate your personalised marketing campaigns, try it for free for 21 days. No credit card required.

  • Revision 30966 : eviter le moche ’doctype_ecrire’ lors de l’upgrade

    17 août 2009, par fil@… — Log

    eviter le moche ’doctype_ecrire’ lors de l’upgrade