
Recherche avancée
Médias (91)
-
Valkaama DVD Cover Outside
4 octobre 2011, par
Mis à jour : Octobre 2011
Langue : English
Type : Image
-
Valkaama DVD Label
4 octobre 2011, par
Mis à jour : Février 2013
Langue : English
Type : Image
-
Valkaama DVD Cover Inside
4 octobre 2011, par
Mis à jour : Octobre 2011
Langue : English
Type : Image
-
1,000,000
27 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
Demon Seed
26 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
The Four of Us are Dying
26 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
Autres articles (68)
-
Publier sur MédiaSpip
13 juin 2013Puis-je poster des contenus à partir d’une tablette Ipad ?
Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir -
Encoding and processing into web-friendly formats
13 avril 2011, parMediaSPIP automatically converts uploaded files to internet-compatible formats.
Video files are encoded in MP4, Ogv and WebM (supported by HTML5) and MP4 (supported by Flash).
Audio files are encoded in MP3 and Ogg (supported by HTML5) and MP3 (supported by Flash).
Where possible, text is analyzed in order to retrieve the data needed for search engine detection, and then exported as a series of image files.
All uploaded files are stored online in their original format, so you can (...) -
L’utiliser, en parler, le critiquer
10 avril 2011La première attitude à adopter est d’en parler, soit directement avec les personnes impliquées dans son développement, soit autour de vous pour convaincre de nouvelles personnes à l’utiliser.
Plus la communauté sera nombreuse et plus les évolutions seront rapides ...
Une liste de discussion est disponible pour tout échange entre utilisateurs.
Sur d’autres sites (8033)
-
How to estimate bandwidth / speed requirements for real-time streaming video ?
19 juin 2016, par Vivek SethFor a project I’m working on, I’m trying to stream video to an iPhone through its headphone jack. My estimated bitrate is about 200kbps (If i’m wrong about this, please ignore that).
I’d like to squeeze as much performance out of this bitrate as possible and sound is not important for me, only video. My understanding is that to stream a a real-time video I will need to encode it with some codec on-the-fly and send compressed frames to the iPhone for it to decode and render. Based on my research, it seems that H.265 is one of the most space efficient codecs available so i’m considering using that.
Assuming my basic understanding of live streaming is correct, how would I estimate the FPS I could achieve for a given resolution using the H.265 codec ?
The best solution I can think of it to take a video file, encode it with H.265 and trim it to 1 minute of length to see how large the file is. The issue I see with this approach is that I think my calculations would include some overhead from the video container format (AVI, MKV, etc) and from the audio channels that I don’t care about.
-
Preload reference area in sub-pixel motion search (real-time mode)
22 juillet 2011, par Yunqing WangPreload reference area in sub-pixel motion search (real-time mode)
-
Get image output from python program and use ffmpeg push the real time video stream to web
26 mai 2018, par Nick TsengI have a question. How to push a real time video streaming after processing ?
First, below program is to preprocess image from usbcamera
Second, push the image into real time video streaming by another process (ffmpeg -r 29 -i test.avi http://ffserver IP:8090/camera.ffm)
cap = cv2.VideoCapture(1) ##activate usbcamera
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
ysize, xsize = frame_height , frame_width
filepath = 'test.avi'
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
out = cv2.VideoWriter(filepath , fourcc , 29.0 , (frame_width , frame_height),True)
while(cap.isOpened()):
#read camera image
ret , frame = cap.read()
#color selection
tmp = color_select_test(frame)
# Mix with original image
tmp = weighted_img(tmp, frame, 0.5, 1.0, 0.0)
# write in video file
out.write(tmp)
#cv2.imwrite('test.avi',tmp)
cv2.imshow('FrameWrite' , tmp)
if(cv2.waitKey(1) == 27):
##cv2.imwrite('test_blue.jpg',frame)
break
cap.release()
cv2.destroyAllWindows()