Recherche avancée

Médias (0)

Mot : - Tags -/clipboard

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (42)

  • Support de tous types de médias

    10 avril 2011

    Contrairement à beaucoup de logiciels et autres plate-formes modernes de partage de documents, MediaSPIP a l’ambition de gérer un maximum de formats de documents différents qu’ils soient de type : images (png, gif, jpg, bmp et autres...) ; audio (MP3, Ogg, Wav et autres...) ; vidéo (Avi, MP4, Ogv, mpg, mov, wmv et autres...) ; contenu textuel, code ou autres (open office, microsoft office (tableur, présentation), web (html, css), LaTeX, Google Earth) (...)

  • HTML5 audio and video support

    13 avril 2011, par

    MediaSPIP uses HTML5 video and audio tags to play multimedia files, taking advantage of the latest W3C innovations supported by modern browsers.
    The MediaSPIP player used has been created specifically for MediaSPIP and can be easily adapted to fit in with a specific theme.
    For older browsers the Flowplayer flash fallback is used.
    MediaSPIP allows for media playback on major mobile platforms with the above (...)

  • Support audio et vidéo HTML5

    10 avril 2011

    MediaSPIP utilise les balises HTML5 video et audio pour la lecture de documents multimedia en profitant des dernières innovations du W3C supportées par les navigateurs modernes.
    Pour les navigateurs plus anciens, le lecteur flash Flowplayer est utilisé.
    Le lecteur HTML5 utilisé a été spécifiquement créé pour MediaSPIP : il est complètement modifiable graphiquement pour correspondre à un thème choisi.
    Ces technologies permettent de distribuer vidéo et son à la fois sur des ordinateurs conventionnels (...)

Sur d’autres sites (10641)

  • Naive Sorenson Video 1 Encoder

    12 septembre 2010, par Multimedia Mike — General

    (Yes, the word is “naive” — or rather, “naïve” — not “native”. People always try to correct me when I use the word. Indeed, it should actually be written with 2 dots over the ‘i’ but who has a keyboard that can easily do that ?)

    At the most primitive level, programming a video encoder is about writing out a sequence of bits that the corresponding video decoder will understand. It’s sort of like creating a program — represented as a stream of opcodes — that will run on a given microprocessor or virtual machine. In fact, reading a video codec bitstream specification will reveal a lot of terminology along the lines of “transmitting information to the decoder” or “signaling the decoder to do xyz.”

    Creating a good encoder that will deliver decent quality at a reasonable bitrate is difficult. Creating a naive encoder that produces a technically compliant bitstream, not so much.



    When I wrote an FFmpeg encoder for Sorenson Video 1 (SVQ1), the first step was to just create a minimally compliant bitstream. The coarsest encoding mode that SVQ1 allows is to encode the average (mean) of each 16×16 block of samples. So I created an encoder that just encoded the mean of each block. Apple’s QuickTime Player was able to play the resulting video in all of its blocky glory. The result rather reminds me of the Super Nintendo’s mosaic effect.

    Level 5 blocks (mean-only 16×16 encoding) :



    Level 3 blocks (mean-only 8×8 encoding) :



    It’s one thing for your own decoder (in this case, FFmpeg’s own decoder) to be able to decode the data. The big test is whether the official decoder (in this case, Apple QuickTime Player) can decode the file.



    Now that’s a good feeling. After establishing that sort of baseline, it’s possible to adapt more and more features of the codec.

  • Anatomy of an optimization : H.264 deblocking

    26 mai 2010, par Dark Shikari — H.264, assembly, development, speed, x264

    As mentioned in the previous post, H.264 has an adaptive deblocking filter. But what exactly does that mean — and more importantly, what does it mean for performance ? And how can we make it as fast as possible ? In this post I’ll try to answer these questions, particularly in relation to my recent deblocking optimizations in x264.

    H.264′s deblocking filter has two steps : strength calculation and the actual filter. The first step calculates the parameters for the second step. The filter runs on all the edges in each macroblock. That’s 4 vertical edges of length 16 pixels and 4 horizontal edges of length 16 pixels. The vertical edges are filtered first, from left to right, then the horizontal edges, from top to bottom (order matters !). The leftmost edge is the one between the current macroblock and the left macroblock, while the topmost edge is the one between the current macroblock and the top macroblock.

    Here’s the formula for the strength calculation in progressive mode. The highest strength that applies is always selected.

    If we’re on the edge between an intra macroblock and any other macroblock : Strength 4
    If we’re on an internal edge of an intra macroblock : Strength 3
    If either side of a 4-pixel-long edge has residual data : Strength 2
    If the motion vectors on opposite sides of a 4-pixel-long edge are at least a pixel apart (in either x or y direction) or the reference frames aren’t the same : Strength 1
    Otherwise : Strength 0 (no deblocking)

    These values are then thrown into a lookup table depending on the quantizer : higher quantizers have stronger deblocking. Then the actual filter is run with the appropriate parameters. Note that Strength 4 is actually a special deblocking mode that performs a much stronger filter and affects more pixels.

    One can see somewhat intuitively why these strengths are chosen. The deblocker exists to get rid of sharp edges caused by the block-based nature of H.264, and so the strength depends on what exists that might cause such sharp edges. The strength calculation is a way to use existing data from the video stream to make better decisions during the deblocking process, improving compression and quality.

    Both the strength calculation and the actual filter (not described here) are very complex if naively implemented. The latter can be SIMD’d with not too much difficulty ; no H.264 decoder can get away with reasonable performance without such a thing. But what about optimizing the strength calculation ? A quick analysis shows that this can be beneficial as well.

    Since we have to check both horizontal and vertical edges, we have to check up to 32 pairs of coefficient counts (for residual), 16 pairs of reference frame indices, and 128 motion vector values (counting x and y as separate values). This is a lot of calculation ; a naive implementation can take 500-1000 clock cycles on a modern CPU. Of course, there’s a lot of shortcuts we can take. Here’s some examples :

    • If the macroblock uses the 8×8 transform, we only need to check 2 edges in each direction instead of 4, because we don’t deblock inside of the 8×8 blocks.
    • If the macroblock is a P-skip, we only have to check the first edge in each direction, since there’s guaranteed to be no motion vector differences, reference frame differences, or residual inside of the macroblock.
    • If the macroblock has no residual at all, we can skip that check.
    • If we know the partition type of the macroblock, we can do motion vector checks only along the edges of the partitions.
    • If the effective quantizer is so low that no deblocking would be performed no matter what, don’t bother calculating the strength.

    But even all of this doesn’t save us from ourselves. We still have to iterate over a ton of edges, checking each one. Stuff like the partition-checking logic greatly complicates the code and adds overhead even as it reduces the number of checks. And in many cases decoupling the checks to add such logic will make it slower : if the checks are coupled, we can avoid doing a motion vector check if there’s residual, since Strength 2 overrides Strength 1.

    But wait. What if we could do this in SIMD, just like the actual loopfilter itself ? Sure, it seems more of a problem for C code than assembly, but there aren’t any obvious things in the way. Many years ago, Loren Merritt (pengvado) wrote the first SIMD implementation that I know of (for ffmpeg’s decoder) ; it is quite fast, so I decided to work on porting the idea to x264 to see if we could eke out a bit more speed here as well.

    Before I go over what I had to do to make this change, let me first describe how deblocking is implemented in x264. Since the filter is a loopfilter, it acts “in loop” and must be done in both the encoder and decoder — hence why x264 has it too, not just decoders. At the end of encoding one row of macroblocks, x264 goes back and deblocks the row, then performs half-pixel interpolation for use in encoding the next frame.

    We do it per-row for reasons of cache coherency : deblocking accesses a lot of pixels and a lot of code that wouldn’t otherwise be used, so it’s more efficient to do it in a single pass as opposed to deblocking each macroblock immediately after encoding. Then half-pixel interpolation can immediately re-use the resulting data.

    Now to the change. First, I modified deblocking to implement a subset of the macroblock_cache_load function : spend an extra bit of effort loading the necessary data into a data structure which is much simpler to address — as an assembly implementation would need (x264_macroblock_cache_load_deblock). Then I massively cleaned up deblocking to move all of the core strength-calculation logic into a single, small function that could be converted to assembly (deblock_strength_c). Finally, I wrote the assembly functions and worked with Loren to optimize them. Here’s the result.

    And the timings for the resulting assembly function on my Core i7, in cycles :

    deblock_strength_c : 309
    deblock_strength_mmx : 79
    deblock_strength_sse2 : 37
    deblock_strength_ssse3 : 33

    Now that is a seriously nice improvement. 33 cycles on average to perform that many comparisons–that’s absurdly low, especially considering the SIMD takes no branchy shortcuts : it always checks every single edge ! I walked over to my performance chart and happily crossed off a box.

    But I had a hunch that I could do better. Remember, as mentioned earlier, we’re reloading all that data back into our data structures in order to address it. This isn’t that slow, but takes enough time to significantly cut down on the gain of the assembly code. And worse, less than a row ago, all this data was in the correct place to be used (when we just finished encoding the macroblock) ! But if we did the deblocking right after encoding each macroblock, the cache issues would make it too slow to be worth it (yes, I tested this). So I went back to other things, a bit annoyed that I couldn’t get the full benefit of the changes.

    Then, yesterday, I was talking with Pascal, a former Xvid dev and current video hacker over at Google, about various possible x264 optimizations. He had seen my deblocking changes and we discussed that a bit as well. Then two lines hit me like a pile of bricks :

    <_skal_> tried computing the strength at least ?
    <_skal_> while it’s fresh

    Why hadn’t I thought of that ? Do the strength calculation immediately after encoding each macroblock, save the result, and then go pick it up later for the main deblocking filter. Then we can use the data right there and then for strength calculation, but we don’t have to do the whole deblock process until later.

    I went and implemented it and, after working my way through a horde of bugs, eventually got a working implementation. A big catch was that of slices : deblocking normally acts between slices even though normal encoding does not, so I had to perform extra munging to get that to work. By midday today I was able to go cross yet another box off on the performance chart. And now it’s committed.

    Sometimes chatting for 10 minutes with another developer is enough to spot the idea that your brain somehow managed to miss for nearly a straight week.

    NB : the performance chart is on a specific test clip at a specific set of settings (super fast settings) relevant to the company I work at, so it isn’t accurate nor complete for, say, default settings.

    Update : Here’s a higher resolution version of the current chart, as requested in the comments.

  • Padding thumbnail with color

    9 juin 2010, par Mikko Koppanen — Imagick, PHP stuff

    I know, it’s been a while since I last blogged. This is because a lot of things are happening in my personal life. I recently relocated to London from Finland and started a new job. Things are quite busy but I will try to post an example now and then. In the meanwhile I would like to hear about sites using Imagick, so if your project is not super secret please post an url and maybe a small explanation what you’re doing with Imagick on the site. This is purely for my personal interest.

    Anyway, to the point. Today’s example originates from a question asked by a user. How do I thumbnail the image inside given dimensions proportionally and fill the “blank” areas with a color ? Well, the answer is here :)

    The code is for Imagick 2.1.0 but adapting to older versions should not be hard.

    1. < ?php
    2. /* Define width and height of the thumbnail */
    3. $width = 100 ;
    4. $height = 100 ;
    5.  
    6. /* Instanciate and read the image in */
    7. $im = new Imagick( "test.png" ) ;
    8.  
    9. /* Fit the image into $width x $height box
    10.  The third parameter fits the image into a "bounding box" */
    11. $im->thumbnailImage( $width, $height, true ) ;
    12.  
    13. /* Create a canvas with the desired color */
    14. $canvas = new Imagick() ;
    15. $canvas->newImage( $width, $height, ’pink’, ’png’ ) ;
    16.  
    17. /* Get the image geometry */
    18. $geometry = $im->getImageGeometry() ;
    19.  
    20. /* The overlay x and y coordinates */
    21. $x = ( $width - $geometry[’width’] ) / 2 ;
    22. $y = ( $height - $geometry[’height’] ) / 2 ;
    23.  
    24. /* Composite on the canvas */
    25. $canvas->compositeImage( $im, imagick: :COMPOSITE_OVER, $x, $y ) ;
    26.  
    27. /* Output the image*/
    28. header( "Content-Type : image/png" ) ;
    29. echo $canvas ;
    30.  
    31.  ?>

    The source image :
    test.png

    The resulting image :
    testphp.png