
Recherche avancée
Autres articles (100)
-
MediaSPIP 0.1 Beta version
25 avril 2011, parMediaSPIP 0.1 beta is the first version of MediaSPIP proclaimed as "usable".
The zip file provided here only contains the sources of MediaSPIP in its standalone version.
To get a working installation, you must manually install all-software dependencies on the server.
If you want to use this archive for an installation in "farm mode", you will also need to proceed to other manual (...) -
MediaSPIP v0.2
21 juin 2013, parMediaSPIP 0.2 est la première version de MediaSPIP stable.
Sa date de sortie officielle est le 21 juin 2013 et est annoncée ici.
Le fichier zip ici présent contient uniquement les sources de MediaSPIP en version standalone.
Comme pour la version précédente, il est nécessaire d’installer manuellement l’ensemble des dépendances logicielles sur le serveur.
Si vous souhaitez utiliser cette archive pour une installation en mode ferme, il vous faudra également procéder à d’autres modifications (...) -
MediaSPIP version 0.1 Beta
16 avril 2011, parMediaSPIP 0.1 beta est la première version de MediaSPIP décrétée comme "utilisable".
Le fichier zip ici présent contient uniquement les sources de MediaSPIP en version standalone.
Pour avoir une installation fonctionnelle, il est nécessaire d’installer manuellement l’ensemble des dépendances logicielles sur le serveur.
Si vous souhaitez utiliser cette archive pour une installation en mode ferme, il vous faudra également procéder à d’autres modifications (...)
Sur d’autres sites (10978)
-
WARN : Tried to pass invalid video frame, marking as broken : Your frame has data type int64, but we require uint8
5 septembre 2019, par Tavo DiazI am doing some Udemy AI courses and came across with one that "teaches" a bidimensional cheetah how to walk. I was doing the exercises on my computer, but it takes too much time. I decided to use Google Cloud to run the code and see the results some hours after. Nevertheless, when I run the code I get the following error " WARN : Tried to pass
invalid video frame, marking as broken : Your frame has data type int64, but we require uint8 (i.e. RGB values from 0-255)".After the code is executed, I see into the folder and I don’t see any videos (just the meta info).
Some more info (if it helps) :
I have a 1 CPU (4g), SSD Ubuntu 16.04 LTSI have not tried anything yet to solve it because I don´t know what to try. Im looking for solutions on the web, but nothing I could try.
This is the code
import os
import numpy as np
import gym
from gym import wrappers
import pybullet_envs
class Hp():
def __init__(self):
self.nb_steps = 1000
self.episode_lenght = 1000
self.learning_rate = 0.02
self.nb_directions = 32
self.nb_best_directions = 32
assert self.nb_best_directions <= self.nb_directions
self.noise = 0.03
self.seed = 1
self.env_name = 'HalfCheetahBulletEnv-v0'
class Normalizer():
def __init__(self, nb_inputs):
self.n = np.zeros(nb_inputs)
self.mean = np.zeros(nb_inputs)
self.mean_diff = np.zeros(nb_inputs)
self.var = np.zeros(nb_inputs)
def observe(self, x):
self.n += 1.
last_mean = self.mean.copy()
self.mean += (x - self.mean) / self.n
#abajo es el online numerator update
self.mean_diff += (x - last_mean) * (x - self.mean)
#abajo online computation de la varianza
self.var = (self.mean_diff / self.n).clip(min = 1e-2)
def normalize(self, inputs):
obs_mean = self.mean
obs_std = np.sqrt(self.var)
return (inputs - obs_mean) / obs_std
class Policy():
def __init__(self, input_size, output_size):
self.theta = np.zeros((output_size, input_size))
def evaluate(self, input, delta = None, direction = None):
if direction is None:
return self.theta.dot(input)
elif direction == 'positive':
return (self.theta + hp.noise * delta).dot(input)
else:
return (self.theta - hp.noise * delta).dot(input)
def sample_deltas(self):
return [np.random.randn(*self.theta.shape) for _ in range(hp.nb_directions)]
def update (self, rollouts, sigma_r):
step = np.zeros(self.theta.shape)
for r_pos, r_neg, d in rollouts:
step += (r_pos - r_neg) * d
self.theta += hp.learning_rate / (hp.nb_best_directions * sigma_r) * step
def explore(env, normalizer, policy, direction = None, delta = None):
state = env.reset()
done = False
num_plays = 0.
#abajo puede ser promedio de las rewards
sum_rewards = 0
while not done and num_plays < hp.episode_lenght:
normalizer.observe(state)
state = normalizer.normalize(state)
action = policy.evaluate(state, delta, direction)
state, reward, done, _ = env.step(action)
reward = max(min(reward, 1), -1)
#abajo sería poner un promedio
sum_rewards += reward
num_plays += 1
return sum_rewards
def train (env, policy, normalizer, hp):
for step in range(hp.nb_steps):
#iniciar las perturbaciones deltas y los rewards positivos/negativos
deltas = policy.sample_deltas()
positive_rewards = [0] * hp.nb_directions
negative_rewards = [0] * hp.nb_directions
#sacar las rewards en la dirección positiva
for k in range(hp.nb_directions):
positive_rewards[k] = explore(env, normalizer, policy, direction = 'positive', delta = deltas[k])
#sacar las rewards en dirección negativo
for k in range(hp.nb_directions):
negative_rewards[k] = explore(env, normalizer, policy, direction = 'negative', delta = deltas[k])
#sacar todas las rewards para sacar la desvest
all_rewards = np.array(positive_rewards + negative_rewards)
sigma_r = all_rewards.std()
#acomodar los rollauts por el max (r_pos, r_neg) y seleccionar la mejor dirección
scores = {k:max(r_pos, r_neg) for k, (r_pos, r_neg) in enumerate(zip(positive_rewards, negative_rewards))}
order = sorted(scores.keys(), key = lambda x:scores[x])[:hp.nb_best_directions]
rollouts = [(positive_rewards[k], negative_rewards[k], deltas[k]) for k in order]
#actualizar policy
policy.update (rollouts, sigma_r)
#poner el final reward del policy luego del update
reward_evaluation = explore (env, normalizer, policy)
print('Paso: ', step, 'Lejania: ', reward_evaluation)
def mkdir(base, name):
path = os.path.join(base, name)
if not os.path.exists(path):
os.makedirs(path)
return path
work_dir = mkdir('exp', 'brs')
monitor_dir = mkdir(work_dir, 'monitor')
hp = Hp()
np.random.seed(hp.seed)
env = gym.make(hp.env_name)
env = wrappers.Monitor(env, monitor_dir, force = True)
nb_inputs = env.observation_space.shape[0]
nb_outputs = env.action_space.shape[0]
policy = Policy(nb_inputs, nb_outputs)
normalizer = Normalizer(nb_inputs)
train(env, policy, normalizer, hp) -
Cannot play audio from a link using a Discord Bot
2 mars 2020, par GuilhermeffableI’m trying to code a bot so me and my friends can hear the local radio on our Discord Server but I’m having this error.
This is part of my code, it’s the play.js file that handles the playback stuff.
module.exports = (client,message) => {
const voiceChannel = message.member.voiceChannel;
const idChannel = voiceChannel.id;
console.log(idChannel)
//vê se o user está numa sala de voz
if(!voiceChannel) {
return message.channel.send("Precisas de estar num voice channel para usar este comando.")
}
const permissions = voiceChannel.permissionsFor(message.client.user);
//vê se tem permissões para entrar na sala
if(!permissions.has('CONNECT') || !permissions.has('SPEAK')) {
return message.channel.send("Não tenho permissões para entrar nessa sala.")
}
voiceChannel.join()
.then(connection => {
console.log("Successfully connected.");
connection.playStream('http://centova.radios.pt:8401/stream.mp3/1')
}).catch(e =>{
console.error(e);
});}
And this is the error I’m getting :
TypeError [ERR_INVALID_ARG_TYPE]: The "file" argument must be of type string. Received an instance of
Object
at validateString (internal/validators.js:117:11)
at normalizeSpawnArguments (child_process.js:406:3)
at Object.spawn (child_process.js:542:16)
at new FfmpegProcess (C:\Users\guilh\desktop\BOT\orbitalbot\node_modules\prism-media\src\transcoders\ffmpeg\FfmpegProcess.js:14:33)
at FfmpegTranscoder.transcode (C:\Users\guilh\desktop\BOT\orbitalbot\node_modules\prism-media\src\transcoders\ffmpeg\Ffmpeg.js:34:18)
at MediaTranscoder.transcode (C:\Users\guilh\desktop\BOT\orbitalbot\node_modules\prism-media\src\transcoders\MediaTranscoder.js:27:31)
at Prism.transcode (C:\Users\guilh\desktop\BOT\orbitalbot\node_modules\prism-media\src\Prism.js:13:28)
at AudioPlayer.playUnknownStream (C:\Users\guilh\desktop\BOT\orbitalbot\node_modules\discord.js\src\client\voice\player\AudioPlayer.js:97:35)
at VoiceConnection.playStream (C:\Users\guilh\desktop\BOT\orbitalbot\node_modules\discord.js\src\client\voice\VoiceConnection.js:546:24)
at C:\Users\guilh\desktop\BOT\orbitalbot\commands\play.js:24:24 {
code: 'ERR_INVALID_ARG_TYPE' -
Evolution #4496 (En cours) : [Cohérence d’interface] Harmonisation de la gestion des doc/logos en 3.3
25 mai 2020Bonjour,
Contexte¶
Je viens de tester la migration de 2 sites en mutualisation facile de 3.2.7 SVN à 3.3 SVN.
Nickel, ça marche.
J’ai pu vérifier que les logos étaient bien déplacés dans sites/nomdedomaine/IMG/logo/Mais, j’avais cru comprendre que les logos devenaient des documents comme les autres, ce qui permettrait de les réutiliser via la bibliothèque.
Constat¶
Et là, c’est le drame.
Les logos ne sont pas listés dans la bibliothèque.Réciproquement, l’upload des logos est identique aux versions précédentes de SPIP.
Donc, ne permet :- ni d’aller chercher un logo dans la bibliothèque
- ni de modifier un logo (il faut comme avant le supprimer, ce qui pose problème quand on veut modifier le logo normal et qu’il y a un logo de survol).
Bref, c’est peut-être un chantier pour 3.4, mais en l’état, cette conversion des logos en documents ne me semble rien apporter pour l’utilisateur final.
Comportements attendus¶
- téléversement des logos utilisant les mêmes mécanismes que ceux des documents/images
- boite d’édition d’un logo semblable à celle des documents, permettant entre autre de changer le fichiers du logo
- logos listés dans la médiathèque
- logos utilisable comme images dans les articles