
Recherche avancée
Médias (1)
-
Carte de Schillerkiez
13 mai 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Texte
Autres articles (108)
-
Les autorisations surchargées par les plugins
27 avril 2010, parMediaspip core
autoriser_auteur_modifier() afin que les visiteurs soient capables de modifier leurs informations sur la page d’auteurs -
Ajouter notes et légendes aux images
7 février 2011, parPour pouvoir ajouter notes et légendes aux images, la première étape est d’installer le plugin "Légendes".
Une fois le plugin activé, vous pouvez le configurer dans l’espace de configuration afin de modifier les droits de création / modification et de suppression des notes. Par défaut seuls les administrateurs du site peuvent ajouter des notes aux images.
Modification lors de l’ajout d’un média
Lors de l’ajout d’un média de type "image" un nouveau bouton apparait au dessus de la prévisualisation (...) -
Contribute to a better visual interface
13 avril 2011MediaSPIP is based on a system of themes and templates. Templates define the placement of information on the page, and can be adapted to a wide range of uses. Themes define the overall graphic appearance of the site.
Anyone can submit a new graphic theme or template and make it available to the MediaSPIP community.
Sur d’autres sites (11974)
-
lavfi : add a new filtergraph parsing API
16 janvier 2023, par Anton Khirnovlavfi : add a new filtergraph parsing API
Callers currently have two ways of adding filters to a graph - they can
eithercreate, initialize, and link them manually
use one of the avfilter_graph_parse*() functions, which take a
(typically end-user-written) string, split it into individual filter
definitions+options, then create filters, apply options, initialize
filters, and finally link them - all based on information from this
string.A major problem with the second approach is that it performs many
actions as a single atomic unit, leaving the caller no space to
intervene in between. Such intervention would be useful e.g. tomodify filter options ;
supply hardware device contexts ;
both of which typically must be done before the filter is initialized.Callers who need such intervention are then forced to invent their own
filtergraph parsing, which is clearly suboptimal.This commit aims to address this problem by adding a new modular
filtergraph parsing API. It adds a new avfilter_graph_segment_parse()
function to parse a string filtergraph description into an intermediate
tree-like representation (AVFilterGraphSegment and its children).This intermediate form may then be applied step by step using further
new avfilter_graph_segment*() functions, with user intervention possible
between each step. -
build : Fine-grained link-time dependency settings
22 janvier 2017, par Diego Biurrunbuild : Fine-grained link-time dependency settings
Previously, all link-time dependencies were added for all libraries,
resulting in bogus link-time dependencies since not all dependencies
are shared across libraries. Also, in some cases like libavutil, not
all dependencies were taken into account, resulting in some cases of
underlinking.To address all this mess a machinery is added for tracking which
dependency belongs to which library component and then leveraged
to determine correct dependencies for all individual libraries. -
Error in Splitting Educational Videos into Segments Using Python (ffmpeg issue) [closed]
28 décembre 2024, par Yahia Mohamed HanbalI created a Python project to split long educational videos into smaller segments, each focused on a single question. The program uses OCR to detect text on video frames, identifies the word "Question," extracts the number following it, and splits the video whenever the number increases.


here is the video i am tring to split ((video))


Here’s an example of the program’s output :


Video loaded: 14071 frames at 60 FPS, duration: 234.52s 
Frame 480, Time 8.00s, Question: 6 
... 
Frame 12360, Time 206.00s, Question: 7 
Creating segment 1: 8.00s to 206.00s 
Error: module 'ffmpeg' has no attribute 'Error'



I’ve shared the full code in a GitHub repository for reference : Automated Video Scene Cutting.


What the Program Does


- 

- Input : A long educational video.
- Processing :

- 

- Detects text in each frame using OCR.
- Searches for the word "Question" followed by a number.
- Monitors when the number increases to identify segment boundaries.








- Output : Creates video segments corresponding to individual questions.








The Problem


The program detects the questions and timestamps correctly, but when it tries to create the segments, I encounter the following error :


Error: module 'ffmpeg' has no attribute 'Error'



What I’ve Tried


- 

- Verified the
ffmpeg-python
library is installed (pip show ffmpeg-python
confirms the installation). - Ensured the
ffmpeg
binary is accessible from the command line. - Reviewed the library documentation to ensure the correct usage of
ffmpeg
. - Tested with different video files to rule out input-specific issues.










Environment Details


- 

- OS : Windows 11
- Python Version : 3.9.13
- Key Libraries :
ffmpeg-python








If anyone has insights into resolving this issue or suggestions for alternative approaches to handle this use case, I’d greatly appreciate your help.


Thank you !