
Recherche avancée
Autres articles (66)
-
Installation en mode ferme
4 février 2011, parLe mode ferme permet d’héberger plusieurs sites de type MediaSPIP en n’installant qu’une seule fois son noyau fonctionnel.
C’est la méthode que nous utilisons sur cette même plateforme.
L’utilisation en mode ferme nécessite de connaïtre un peu le mécanisme de SPIP contrairement à la version standalone qui ne nécessite pas réellement de connaissances spécifique puisque l’espace privé habituel de SPIP n’est plus utilisé.
Dans un premier temps, vous devez avoir installé les mêmes fichiers que l’installation (...) -
Emballe médias : à quoi cela sert ?
4 février 2011, parCe plugin vise à gérer des sites de mise en ligne de documents de tous types.
Il crée des "médias", à savoir : un "média" est un article au sens SPIP créé automatiquement lors du téléversement d’un document qu’il soit audio, vidéo, image ou textuel ; un seul document ne peut être lié à un article dit "média" ; -
Encoding and processing into web-friendly formats
13 avril 2011, parMediaSPIP automatically converts uploaded files to internet-compatible formats.
Video files are encoded in MP4, Ogv and WebM (supported by HTML5) and MP4 (supported by Flash).
Audio files are encoded in MP3 and Ogg (supported by HTML5) and MP3 (supported by Flash).
Where possible, text is analyzed in order to retrieve the data needed for search engine detection, and then exported as a series of image files.
All uploaded files are stored online in their original format, so you can (...)
Sur d’autres sites (12046)
-
The 11th Hour RoQ Variation
12 avril 2012, par Multimedia Mike — Game Hacking, dreamroq, Reverse Engineering, roq, Vector QuantizationI have been looking at the RoQ file format almost as long as I have been doing practical multimedia hacking. However, I have never figured out how the RoQ format works on The 11th Hour, which was the game for which the RoQ format was initially developed. When I procured the game years ago, I remember finding what appeared to be RoQ files and shoving them through the open source decoders but not getting the right images out.
I decided to dust off that old copy of The 11th Hour and have another go at it.
Baseline
The game consists of 4 CD-ROMs. Each disc has a media/ directory that has a series of files bearing the extension .gjd, likely the initials of one Graeme J. Devine. These are resource files which are merely headerless concatenations of other files. Thus, at first glance, one file might appear to be a single RoQ file. So that’s the source of some of the difficulty : Sending an apparent RoQ .gjd file through a RoQ player will often cause the program to complain when it encounters the header of another RoQ file.I have uploaded some samples to the usual place.
However, even the frames that a player can decode (before encountering a file boundary within the resource file) look wrong.
Investigating Codebooks Using dreamroq
I wrote dreamroq last year– an independent RoQ playback library targeted towards embedded systems. I aimed it at a gjd file and quickly hit a codebook error.RoQ is a vector quantizer video codec that maintains a codebook of 256 2×2 pixel vectors. In the Quake III and later RoQ files, these are transported using a YUV 4:2:0 colorspace– 4 Y samples, a U sample, and a V sample to represent 4 pixels. This totals 6 bytes per vector. A RoQ codebook chunk contains a field that indicates the number of 2×2 vectors as well as the number of 4×4 vectors. The latter vectors are each comprised of 4 2×2 vectors.
Thus, the total size of a codebook chunk ought to be (# of 2×2 vectors) * 6 + (# of 4×4 vectors) * 4.
However, this is not the case with The 11th Hour RoQ files.
Longer Codebooks And Mystery Colorspace
Juggling the numbers for a few of the codebook chunks, I empirically determined that the 2×2 vectors are represented by 10 bytes instead of 6. Now I need to determine what exactly these 10 bytes represent.I should note that I suspect that everything else about these files lines up with successive generations of the format. For example if a file has 640×320 resolution, that amounts to 40×20 macroblocks. dreamroq iterates through 40×20 8×8 blocks and precisely exhausts the VQ bitstream. So that all looks valid. I’m just puzzled on the codebook format.
Here is an example codebook dump :
ID 0x1002, len = 0x0000014C, args = 0x1C0D 0 : 00 00 00 00 00 00 00 00 80 80 1 : 08 07 00 00 1F 5B 00 00 7E 81 2 : 00 00 15 0F 00 00 40 3B 7F 84 3 : 00 00 00 00 3A 5F 18 13 7E 84 4 : 00 00 00 00 3B 63 1B 17 7E 85 5 : 18 13 00 00 3C 63 00 00 7E 88 6 : 00 00 00 00 00 00 59 3B 7F 81 7 : 00 00 56 23 00 00 61 2B 80 80 8 : 00 00 2F 13 00 00 79 63 81 83 9 : 00 00 00 00 5E 3F AC 9B 7E 81 10 : 1B 17 00 00 B6 EF 77 AB 7E 85 11 : 2E 43 00 00 C1 F7 75 AF 7D 88 12 : 6A AB 28 5F B6 B3 8C B3 80 8A 13 : 86 BF 0A 03 D5 FF 3A 5F 7C 8C 14 : 00 00 9E 6B AB 97 F5 EF 7F 80 15 : 86 73 C8 CB B6 B7 B7 B7 85 8B 16 : 31 17 84 6B E7 EF FF FF 7E 81 17 : 79 AF 3B 5F FC FF E2 FF 7D 87 18 : DC FF AE EF B3 B3 B8 B3 85 8B 19 : EF FF F5 FF BA B7 B6 B7 88 8B 20 : F8 FF F7 FF B3 B7 B7 B7 88 8B 21 : FB FF FB FF B8 B3 B4 B3 85 88 22 : F7 FF F7 FF B7 B7 B9 B7 87 8B 23 : FD FF FE FF B9 B7 BB B7 85 8A 24 : E4 FF B7 EF FF FF FF FF 7F 83 25 : FF FF AC EB FF FF FC FF 7F 83 26 : CC C7 F7 FF FF FF FF FF 7F 81 27 : FF FF FE FF FF FF FF FF 80 80
Note that 0x14C (the chunk size) = 332, 0x1C and 0x0D (the chunk arguments — count of 2×2 and 4×4 vectors, respectively) are 28 and 13. 28 * 10 + 13 * 4 = 332, so the numbers check out.
Do you see any patterns in the codebook ? Here are some things I tried :
- Treating the last 2 bytes as U & V and treating the first 4 as the 4 Y samples :
- Treating the last 2 bytes as U & V and treating the first 8 as 4 16-bit little-endian Y samples :
- Disregarding the final 2 bytes and treating the first 8 bytes as 4 RGB565 pixels (both little- and big-endian, respectively, shown here) :
- Based on the type of data I’m seeing in these movies (which appears to be intended as overlays), I figured that some of these bits might indicate transparency ; here is 15-bit big-endian RGB which disregards the top bit of each pixel :
These images are taken from the uploaded sample bdpuz.gjd, apparently a component of the puzzle represented in this screenshot.
Unseen Types
It has long been rumored that early RoQ files could contain JPEG images. I finally found one such specimen. One of the files bundled early in the uploaded fhpuz.gjd sample contains a JPEG frame. It’s a standard JFIF file and can easily be decoded after separating the bytes from the resource using ‘dd’. JPEGs serve as intraframes in the coding scheme, with successive RoQ frames moving objects on top.However, a new chunk type showed up as well, one identified by 0×1030. I have never encountered this type. Where could I possibly find data about this ? Fortunately, iD Games recently posted all of their open sourced games at Github. Reading through the code for their official RoQ decoder, I see that this is called a RoQ_PACKET. The name and the code behind it are both supremely unhelpful. The code is basically a no-op. The payloads of the various RoQ_PACKETs from one sample are observed to be either 8784, 14752, or 14760 bytes in length. It’s very likely that this serves the same purpose as the JPEG intraframes.
Other Tidbits
I read through the readme.txt on the first game disc and found this nugget :g) Animations displayed normally or in SPOOKY MODE
SPOOKY MODE is blue-tinted grayscale with color cursors, puzzle
and game pieces. It is the preferred display setting of the
developers at Trilobyte. Just for fun, try out the SPOOKY
MODE.The MobyGames screenshot page has a number of screenshots labeled as being captured in spooky mode. Color tricks ?
Meanwhile, another twist arose as I kept tweaking dreamroq to deal with more RoQ weirdness : After modifying my dreamroq code to handle these 10-byte vectors, it eventually chokes on another codebook. These codebooks happen to have 6-byte vectors again ! Fortunately, I was already working on a scheme to automatically detect which codebook is in play (plugging the numbers into a formula and seeing which vector size checks out).
- Treating the last 2 bytes as U & V and treating the first 4 as the 4 Y samples :
-
x264 encoder with JNA
17 mai 2014, par babaI have been busy creating a JNA wrapper around x264.dll. I have the following class for my x264_param_t :
However, when I try to initialize my x264_param_t like that
x264_param_t param_t = new x264_param_t;
I get the following error :
Exception in thread "main" java.lang.IllegalArgumentException: Can't determine size of nested structure: Can't instantiate class anotherReversed.x264_param_t$Vui (java.lang.InstantiationException: anotherReversed.x264_param_t$Vui)
at com.sun.jna.Structure.calculateSize(Structure.java:790)
at com.sun.jna.Structure.allocateMemory(Structure.java:287)
at com.sun.jna.Structure.<init>(Structure.java:177)
at com.sun.jna.Structure.<init>(Structure.java:167)
at com.sun.jna.Structure.<init>(Structure.java:163)
at com.sun.jna.Structure.<init>(Structure.java:154)
at anotherReversed.x264_param_t.<init>(x264_param_t.java:7)
</init></init></init></init></init>If I comment out the Vui in it’s parent class constructor, the instantiation is ok. I wonder what is different with EXACTLY this nested structure, as there are 2 others (namely Rc and Analyse ) that are nested in the same way. Somehow, though, JNA isn’t able to find the required size for Vui. Any pointers ?
Edit :
It seems that all the other nested structs (analyse and rc ) were also not initialized. I wonder why ? -
How to seek in FFmpeg C/C++
21 mars 2016, par DRiFTyDoes anyone know how to implement seeking by seconds (or milliseconds) in FFmpeg. I currently have a loop running through the frames of a video using av_read_frame() and I want to determine what time this frame should be at in seconds. If it gets to a certain point then I want to seek to a later point in the video. By the way it is not a video player, just processing the frames. Ive heard I should be able to get the dts or pts from the packet but its always returning 0.