
Recherche avancée
Autres articles (64)
-
Participer à sa traduction
10 avril 2011Vous pouvez nous aider à améliorer les locutions utilisées dans le logiciel ou à traduire celui-ci dans n’importe qu’elle nouvelle langue permettant sa diffusion à de nouvelles communautés linguistiques.
Pour ce faire, on utilise l’interface de traduction de SPIP où l’ensemble des modules de langue de MediaSPIP sont à disposition. ll vous suffit de vous inscrire sur la liste de discussion des traducteurs pour demander plus d’informations.
Actuellement MediaSPIP n’est disponible qu’en français et (...) -
Publier sur MédiaSpip
13 juin 2013Puis-je poster des contenus à partir d’une tablette Ipad ?
Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir -
HTML5 audio and video support
13 avril 2011, parMediaSPIP uses HTML5 video and audio tags to play multimedia files, taking advantage of the latest W3C innovations supported by modern browsers.
The MediaSPIP player used has been created specifically for MediaSPIP and can be easily adapted to fit in with a specific theme.
For older browsers the Flowplayer flash fallback is used.
MediaSPIP allows for media playback on major mobile platforms with the above (...)
Sur d’autres sites (13664)
-
FFMpeg and WebM/VP8
25 novembre 2011, par Anand SureshI am trying to use ffmpeg and ffserver to stream VP8 video.
I am using the following command to start FFMpeg :
ffmpeg -v 9 -loglevel 99 -f x11grab -s 1440x900 -r2 -i :0.0 -f webm http://localhost:8090/feed1.ffm
The above command abruptly terminates generating the following error :
> FFmpeg version 0.6.2-4:0.6.2-1ubuntu1.1, Copyright (c) 2000-2010 the Libav developers
built on Sep 16 2011 16:57:46 with gcc 4.5.2
configuration: --extra-version=4:0.6.2-1ubuntu1.1 --prefix=/usr --enable-avfilter --enable-avfilter-lavf --enable-vdpau --enable-bzlib --enable-libgsm --enable-libschroedinger --enable-libspeex --enable-libtheora --enable-libvorbis --enable-pthreads --enable-zlib --enable-libvpx --disable-stripping --enable-runtime-cpudetect --enable-vaapi --enable-gpl --enable-postproc --enable-swscale --enable-x11grab --enable-libdc1394 --enable-shared --disable-static
WARNING: library configuration mismatch
libavutil configuration: --extra-version=4:0.6.2-1ubuntu1.1 --prefix=/usr --enable-avfilter --enable-avfilter-lavf --enable-vdpau --enable-bzlib --enable-libgsm --enable-libschroedinger --enable-libspeex --enable-libtheora --enable-libvorbis --enable-pthreads --enable-zlib --enable-libvpx --disable-stripping --enable-runtime-cpudetect --enable-vaapi --enable-gpl --enable-postproc --enable-swscale --enable-x11grab --enable-libdc1394 --shlibdir=/usr/lib/i686/cmov --cpu=i686 --enable-shared --disable-static --disable-ffmpeg --disable-ffplay
libavcodec configuration: --extra-version=4:0.6.2-1ubuntu1.1 --prefix=/usr --enable-avfilter --enable-avfilter-lavf --enable-vdpau --enable-bzlib --enable-libgsm --enable-libschroedinger --enable-libspeex --enable-libtheora --enable-libvorbis --enable-pthreads --enable-zlib --enable-libvpx --disable-stripping --enable-runtime-cpudetect --enable-vaapi --enable-gpl --enable-postproc --enable-swscale --enable-x11grab --enable-libdc1394 --shlibdir=/usr/lib/i686/cmov --cpu=i686 --enable-shared --disable-static --disable-ffmpeg --disable-ffplay
libavformat configuration: --extra-version=4:0.6.2-1ubuntu1.1 --prefix=/usr --enable-avfilter --enable-avfilter-lavf --enable-vdpau --enable-bzlib --enable-libgsm --enable-libschroedinger --enable-libspeex --enable-libtheora --enable-libvorbis --enable-pthreads --enable-zlib --enable-libvpx --disable-stripping --enable-runtime-cpudetect --enable-vaapi --enable-gpl --enable-postproc --enable-swscale --enable-x11grab --enable-libdc1394 --shlibdir=/usr/lib/i686/cmov --cpu=i686 --enable-shared --disable-static --disable-ffmpeg --disable-ffplay
libavdevice configuration: --extra-version=4:0.6.2-1ubuntu1.1 --prefix=/usr --enable-avfilter --enable-avfilter-lavf --enable-vdpau --enable-bzlib --enable-libgsm --enable-libschroedinger --enable-libspeex --enable-libtheora --enable-libvorbis --enable-pthreads --enable-zlib --enable-libvpx --disable-stripping --enable-runtime-cpudetect --enable-vaapi --enable-gpl --enable-postproc --enable-swscale --enable-x11grab --enable-libdc1394 --shlibdir=/usr/lib/i686/cmov --cpu=i686 --enable-shared --disable-static --disable-ffmpeg --disable-ffplay
libavfilter configuration: --extra-version=4:0.6.2-1ubuntu1.1 --prefix=/usr --enable-avfilter --enable-avfilter-lavf --enable-vdpau --enable-bzlib --enable-libgsm --enable-libschroedinger --enable-libspeex --enable-libtheora --enable-libvorbis --enable-pthreads --enable-zlib --enable-libvpx --disable-stripping --enable-runtime-cpudetect --enable-vaapi --enable-gpl --enable-postproc --enable-swscale --enable-x11grab --enable-libdc1394 --shlibdir=/usr/lib/i686/cmov --cpu=i686 --enable-shared --disable-static --disable-ffmpeg --disable-ffplay
libswscale configuration: --extra-version=4:0.6.2-1ubuntu1.1 --prefix=/usr --enable-avfilter --enable-avfilter-lavf --enable-vdpau --enable-bzlib --enable-libgsm --enable-libschroedinger --enable-libspeex --enable-libtheora --enable-libvorbis --enable-pthreads --enable-zlib --enable-libvpx --disable-stripping --enable-runtime-cpudetect --enable-vaapi --enable-gpl --enable-postproc --enable-swscale --enable-x11grab --enable-libdc1394 --shlibdir=/usr/lib/i686/cmov --cpu=i686 --enable-shared --disable-static --disable-ffmpeg --disable-ffplay
libpostproc configuration: --extra-version=4:0.6.2-1ubuntu1.1 --prefix=/usr --enable-avfilter --enable-avfilter-lavf --enable-vdpau --enable-bzlib --enable-libgsm --enable-libschroedinger --enable-libspeex --enable-libtheora --enable-libvorbis --enable-pthreads --enable-zlib --enable-libvpx --disable-stripping --enable-runtime-cpudetect --enable-vaapi --enable-gpl --enable-postproc --enable-swscale --enable-x11grab --enable-libdc1394 --shlibdir=/usr/lib/i686/cmov --cpu=i686 --enable-shared --disable-static --disable-ffmpeg --disable-ffplay
libavutil 50.15. 1 / 50.15. 1
libavcodec 52.72. 2 / 52.72. 2
libavformat 52.64. 2 / 52.64. 2
libavdevice 52. 2. 0 / 52. 2. 0
libavfilter 1.19. 0 / 1.19. 0
libswscale 0.11. 0 / 0.11. 0
libpostproc 51. 2. 0 / 51. 2. 0
[x11grab @ 0x9869420]device: :0.0 -> display: :0.0 x: 0 y: 0 width: 1440 height: 900
[x11grab @ 0x9869420]shared memory extension found
[x11grab @ 0x9869420]Probe buffer size limit 5000000 reached
[x11grab @ 0x9869420]Estimating duration from bitrate, this may be inaccurate
Input #0, x11grab, from ':0.0':
Duration: N/A, start: 1322253753.374957, bitrate: 41472 kb/s
Stream #0.0, 1, 1/1000000: Video: rawvideo, bgra, 1440x900, 1/1, 41472 kb/s, 1 tbr, 1000k tbn, 1 tbc
[libvpx @ 0x9876540]v0.9.6
[libvpx @ 0x9876540]--enable-pic --enable-shared --disable-install-bins --disable-install-srcs --target=x86-linux-gcc
[libvpx @ 0x9876540]vpx_codec_enc_cfg
[libvpx @ 0x9876540]generic settings
g_usage: 0
g_threads: 0
g_profile: 0
g_w: 320
g_h: 240
g_timebase: {1/30}
g_error_resilient: 0
g_pass: 0
g_lag_in_frames: 0
[libvpx @ 0x9876540]rate control settings
rc_dropframe_thresh: 0
rc_resize_allowed: 0
rc_resize_up_thresh: 60
rc_resize_down_thresh: 30
rc_end_usage: 0
rc_twopass_stats_in: (nil)(0)
rc_target_bitrate: 256
[libvpx @ 0x9876540]quantizer settings
rc_min_quantizer: 4
rc_max_quantizer: 63
[libvpx @ 0x9876540]bitrate tolerance
rc_undershoot_pct: 95
rc_overshoot_pct: 200
[libvpx @ 0x9876540]decoder buffer model
rc_buf_sz: 6000
rc_buf_initial_sz: 4000
rc_buf_optimal_sz: 5000
[libvpx @ 0x9876540]2 pass rate control settings
rc_2pass_vbr_bias_pct: 50
rc_2pass_vbr_minsection_pct: 0
rc_2pass_vbr_maxsection_pct: 400
[libvpx @ 0x9876540]keyframing settings
kf_mode: 1
kf_min_dist: 0
kf_max_dist: 9999
[libvpx @ 0x9876540]
[libvpx @ 0x9876540]vpx_codec_enc_cfg
[libvpx @ 0x9876540]generic settings
g_usage: 0
g_threads: 1
g_profile: 0
g_w: 1440
g_h: 900
g_timebase: {1/1}
g_error_resilient: 0
g_pass: 0
g_lag_in_frames: 0
[libvpx @ 0x9876540]rate control settings
rc_dropframe_thresh: 0
rc_resize_allowed: 0
rc_resize_up_thresh: 60
rc_resize_down_thresh: 30
rc_end_usage: 0
rc_twopass_stats_in: (nil)(0)
rc_target_bitrate: 200
[libvpx @ 0x9876540]quantizer settings
rc_min_quantizer: 1
rc_max_quantizer: 38
[libvpx @ 0x9876540]bitrate tolerance
rc_undershoot_pct: 95
rc_overshoot_pct: 200
[libvpx @ 0x9876540]decoder buffer model
rc_buf_sz: 6000
rc_buf_initial_sz: 4000
rc_buf_optimal_sz: 5000
[libvpx @ 0x9876540]2 pass rate control settings
rc_2pass_vbr_bias_pct: 50
rc_2pass_vbr_minsection_pct: 0
rc_2pass_vbr_maxsection_pct: 400
[libvpx @ 0x9876540]keyframing settings
kf_mode: 1
kf_min_dist: 0
kf_max_dist: 12
[libvpx @ 0x9876540]
[libvpx @ 0x9876540]vpx_codec_control
[libvpx @ 0x9876540] VP8E_SET_CPUUSED: 3
[libvpx @ 0x9876540] VP8E_SET_NOISE_SENSITIVITY: 0
Output #0, webm, to 'http://127.0.0.1:8090/feed1.ffm':
Metadata:
encoder : Lavf52.64.2
Stream #0.0, 0, 1/1000: Video: libvpx, yuv420p, 1440x900, 1/1, q=2-31, 200 kb/s, 1k tbn, 1 tbc
Stream mapping:
Stream #0.0 -> #0.0
Press [q] to stop encoding
[webm @ 0x98753b0]Writing block at offset 15, size 158658, pts 0, dts 0, duration 1000, flags 128
[webm @ 0x98753b0]Starting new cluster at offset 158681 bytes, pts 0Can anyone point out what I am doing wrong here ? Why does ffmpeg die everytime it starts a new cluster ?
Thanks
-
RTMP Streaming using ffserver
24 novembre 2012, par NadavRubI would like to be able to stream media content originated by eg. a file to a flash player using RTMP.
I have considered librtmp though it seems ffmpeg support rtmp more as a client than as a server, that is, it implement the push/pull models w/o a server model.
Having 'ffserver' in mind, Does it support RTMP in the above mentioned manner ? is it possibe to expose H264/AAC content via RTMP using ffserver ?
Any help will B appreciated.
Nadav at Sophin
-
Adding A New System To The Game Music Website
1er août 2012, par Multimedia Mike — GeneralAt first, I was planning to just make a little website where users could install a Chrome browser extension and play music from old 8-bit NES games. But, like many software projects, the goal sort of ballooned. I created a website where users can easily play old video game music. It doesn’t cover too many systems yet, but I have had individual requests to add just about every system you can think of.
The craziest part is that I know it’s possible to represent most of the systems. Eventually, it would be great to reach Chipamp parity (a combination plugin for Winamp that packages together plugins for many of these chiptunes). But there is a process to all of this. I have taken to defining a number of phases that are required to get a new system covered.
Phase 0 informally involves marveling at the obscurity of some of the console systems for which chiptune collections have evolved. WonderSwan ? Sharp X68000 ? PC-88 ? I may be viewing this through a terribly Ameri-centric lens. I’ve at least heard of the ZX Spectrum and the Amstrad CPC even if I’ve never seen either.
No matter. The goal is to get all their chiptunes cataloged and playable.
Phase 1 : Finding A Player
The first step is to find a bit of open source code that can play a particular format. If it’s a library that can handle many formats, like Game Music Emu or Audio Overload SDK, even better (probably). The specific open source license isn’t a big concern for me. I’m almost certain that some of the libraries that SaltyGME currently mixes are somehow incompatible, license-wise. I’ll worry about it when I encounter someone who A) cares, and B) is in a position to do something about it. Historical preservation comes first, and these software libraries aren’t getting any younger (I’m finding some that haven’t been touched in a decade).Phase 2 : Test Program
The next phase is to create a basic test bench program that sends a music file into the library, generates a buffer of audio, and shoves it out to the speakers via PulseAudio’s simple API (people like to rip on PulseAudio, but its simple API really lives up to its name and requires pages less boilerplate code to play a few samples than ALSA).Phase 3 : Plug Into Web Player
After successfully creating the test bench and understanding exactly which source files need to be built, the next phase is to hook it up to the main SaltyGME program via the ad-hoc plugin API I developed. This API requires that a player backend can, at the very least, initialize itself based on a buffer of bytes and generate audio samples into an array of 16-bit numbers. The API also provides functions for managing files with multiple tracks and toggling individual voices/channels if the library supports such a feature. Having the test bench application written beforehand usually smooths out this step.But really, I’m just getting started.
Phase 4 : Collecting A Song Corpus
Then there is the matter of staging a collection of songs for a given system. It seems like it would just be a matter of finding a large collection of songs for a given format, downloading them in bulk, and mirroring them. Honestly, that’s the easy part. People who are interested in this stuff have been lovingly curating massive collections of these songs for years (see SNESmusic.org for one of the best examples, and they also host a torrent of all their music for really quick and easy hoarding).
In my drive to make this game music website more useful for normal people, the goal is to extract as much metadata as possible to make searching better, and to package the data so that it’s as convenient as possible for users. Whenever I seek to add a new format to the collection, this is the phase where I invariably find that I have to fundamentally modify some of the assumptions I originally made in the player.First, there were the NES Sound Format (NSF) files, the original format I wanted to play. These are files that have any number of songs packed into a single file. Playback libraries expose APIs to jump to individual tracks. So the player was designed around that. Game Boy GBS files also fall into this category but present a different challenge vis-à-vis metadata, addressed in the next phase.
Then, there were the SPC files. Each SPC file is its own song and multiple SPC files are commonly bundled as RAR files. Not wanting to deal with RAR, or any format where I interacted with a general compression API to pull a few files out, I created a custom resource format (inspired by so many I have studied and documented) and compressed it with a simpler compression API. I also had to modify some of the player’s assumptions to deal with this archive format. Genesis VGMs, bundled either in .zip or .7z, followed the same model as SPC in RAR.
Then it was suggested that I attempt to bring SaltyGME closer to feature parity with Chipamp, rather than just being a Chrome browser frontend for Game Music Emu. When I studied the Portable Sound Format (PSF), I realized it didn’t fit into the player model I already had. PSF uses a sort of shared library model for code execution and I developed another resource archive format to cope with it. So that covers quite a few formats.
One more architecture challenge arose when I started to study one of the prevailing metadata formats, explained in the next phase.
Phase 5 : Metadata
Finally, for the collections to really be useful, I need to harvest that juicy metadata for search and presentation.I have created a series of programs and scripts to scrape metadata out of these music files and store it all in a database that drives the website and search engine. I recognize that it’s no good to have a large corpus of songs with minimal metadata and while importing bulk quantities of music, the scripts harshly reject songs that have too little metadata.
Again, challenges abound. One of the biggest challenges I’m facing is the peculiar quasi-freeform metadata format that emerged as .m3u that takes a form similar to :
################################################################# # # GRADIUS2 # (c) KONAMI by Furukawa Motoaki, IKACHAN # #################################################################
nemesis2.kss::KSS,62,[Nemesis2] (Opening),2:23,,0
nemesis2.kss::KSS,61,[Nemesis2] (Start),7,,0
nemesis2.kss::KSS,43,[Nemesis2] (Air Battle),34,0-
nemesis2.kss::KSS,44,[Nemesis2] (1st. BGM),51,0-
[...]A lot of file formats (including Game Boy GBS mentioned earlier) store their metadata separately using this format. I have some ideas about tools I can use to help me process this data but I’m pretty sure each one will require some manual intervention.
As alluded to in phase 4, .m3u presents another architectural challenge : Notice the second field in the CSV .m3u data. That’s a track number. A player can’t expect every track in a bundled chiptune file to be valid, nor to be in any particular order. Thus, I needed to alter the architecture once more to take this into account. However, instead of modifying the SaltyGME player, I simply extended the metadata database to include a playback order which, by default, is the same as the track order but can also accommodate this new issue. This also has the bonus of providing a facility to exclude playback of certain tracks. This comes in handy for many PSF archives which tend to include files that only provide support for other files and aren’t meant to be played on their own.
Bright Side
The reward for all of this effort is that the data lands in a proper database in the end. None of it goes back into the chiptune files themselves. This makes further modification easier as all of the data that is indexed and presented on the site comes from the database. Somewhere down the road, I should probably create an API for accessing this metadata.