Recherche avancée

Médias (0)

Mot : - Tags -/configuration

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (109)

  • Des sites réalisés avec MediaSPIP

    2 mai 2011, par

    Cette page présente quelques-uns des sites fonctionnant sous MediaSPIP.
    Vous pouvez bien entendu ajouter le votre grâce au formulaire en bas de page.

  • Support audio et vidéo HTML5

    10 avril 2011

    MediaSPIP utilise les balises HTML5 video et audio pour la lecture de documents multimedia en profitant des dernières innovations du W3C supportées par les navigateurs modernes.
    Pour les navigateurs plus anciens, le lecteur flash Flowplayer est utilisé.
    Le lecteur HTML5 utilisé a été spécifiquement créé pour MediaSPIP : il est complètement modifiable graphiquement pour correspondre à un thème choisi.
    Ces technologies permettent de distribuer vidéo et son à la fois sur des ordinateurs conventionnels (...)

  • De l’upload à la vidéo finale [version standalone]

    31 janvier 2010, par

    Le chemin d’un document audio ou vidéo dans SPIPMotion est divisé en trois étapes distinctes.
    Upload et récupération d’informations de la vidéo source
    Dans un premier temps, il est nécessaire de créer un article SPIP et de lui joindre le document vidéo "source".
    Au moment où ce document est joint à l’article, deux actions supplémentaires au comportement normal sont exécutées : La récupération des informations techniques des flux audio et video du fichier ; La génération d’une vignette : extraction d’une (...)

Sur d’autres sites (15986)

  • Revision 32884 : auteurs dans les sommaires (page d’accueil+rubriques)

    13 novembre 2009, par fil@… — Log

    auteurs dans les sommaires (page d’accueil+rubriques)

  • Use ffmpeg to extract picture from m4v file

    31 octobre 2017, par Brian

    I used a program called MetaZ on my mac to tag all my video files (m4v). I am now trying to use these m4v files in Kodi which requires .nfo files and separate picture files for movie posters, etc. I want to extract the picture that is already in the m4v file.

    When I use ffprobe -show_streams, I can see that index4 is a png file (codec_name=png). How do I extract it ? I believe ffmpeg can do it, but can’t figure out how.

    Here is the output from ffprobe :

    Brians-Mac-mini:PythonScript brianjhille$ ffprobe -show_streams badwords.m4v
    ffprobe version N-88046-g0cb8369-tessus Copyright (c) 2007-2017 the FFmpeg developers
     built with Apple LLVM version 8.0.0 (clang-800.0.42.1)
     configuration: --cc=/usr/bin/clang --prefix=/opt/ffmpeg --extra-version=tessus --enable-avisynth --enable-fontconfig --enable-gpl --enable-libass --enable-libbluray --enable-libfreetype --enable-libgsm --enable-libmodplug --enable-libmp3lame --enable-libopencore-amrnb --enable-libopencore-amrwb --enable-libopus --enable-libsnappy --enable-libsoxr --enable-libspeex --enable-libtheora --enable-libvidstab --enable-libvo-amrwbenc --enable-libvorbis --enable-libvpx --enable-libwavpack --enable-libx264 --enable-libx265 --enable-libxavs --enable-libxvid --enable-libzmq --enable-libzvbi --enable-version3 --pkg-config-flags=--static --disable-ffplay
     libavutil      56.  0.100 / 56.  0.100
     libavcodec     58.  0.100 / 58.  0.100
     libavformat    58.  0.100 / 58.  0.100
     libavdevice    58.  0.100 / 58.  0.100
     libavfilter     7.  0.100 /  7.  0.100
     libswscale      5.  0.100 /  5.  0.100
     libswresample   3.  0.100 /  3.  0.100
     libpostproc    55.  0.100 / 55.  0.100
    [mov,mp4,m4a,3gp,3g2,mj2 @ 0x7fd67b002a00] stream 0, timescale not set
    Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'badwords.m4v':
     Metadata:
       major_brand     : mp42
       minor_version   : 0
       compatible_brands: mp42isomavc1
       creation_time   : 2014-10-20T13:01:06.000000Z
       iTunEXTC        : mpaa|R|400|
       title           : Bad Words
       artist          : Jason Bateman, Kathryn Hahn, Allison Janney, Philip Baker Hall, Rohan Chand, Ben Falcone, Patricia Belcher, Beth Grant, Rachel Harris, Steve Witting, Greg Cromer
       date            : 2013-09-06T11:00:00Z
       track           : 0
       disc            : 0
       season_number   : 0
       episode_sort    : 0
       description     : A spelling bee loser sets out to exact revenge by finding a loophole and attempting to win as an adult.
       synopsis        : A spelling bee loser sets out to exact revenge by finding a loophole and attempting to win as an adult.
       encoder         : HandBrake 0.9.9 2013052900
       hd_video        : 0
       media_type      : 9
       genre           : Comedy
       iTunMOVI        : <?xml version="1.0" encoding="UTF-8"?>
                       :
                       : <plist version="1.0">
                       : <dict>
                       :   <key>cast</key>
                       :   <array>
                       :       <dict>
                       :           <key>name</key>
                       :           <string>Jason Bateman</string>
                       :       </dict>
                       :       <dict>
                       :           <key>name</key>
                       :           <string>Kathryn Hahn</string>
                       :       </dict>
                       :       <dict>
                       :           <key>name</key>
                       :           <string>Allison Janney</string>
                       :       </dict>
                       :       <dict>
                       :           <key>name</key>
                       :           <string>Philip Baker Hall</string>
                       :       </dict>
                       :       <dict>
                       :           <key>name</key>
                       :           <string>Rohan Chand</string>
                       :       </dict>
                       :       <dict>
                       :           <key>name</key>
                       :           <string>Ben Falcone</string>
                       :       </dict>
                       :       <dict>
                       :           <key>name</key>
                       :           <string>Patricia Belcher</string>
                       :       </dict>
                       :       <dict>
                       :           <key>name</key>
                       :           <string>Beth Grant</string>
                       :       </dict>
                       :       <dict>
                       :           <key>name</key>
                       :           <string>Rachel Harris</string>
                       :       </dict>
                       :       <dict>
                       :           <key>name</key>
                       :           <string>Steve Witting</string>
                       :       </dict>
                       :       <dict>
                       :           <key>name</key>
                       :           <string>Greg Cromer</string>
                       :       </dict>
                       :   </array>
                       : </dict>
                       : </plist>
                       :
     Duration: 01:29:02.84, start: 0.000000, bitrate: 1339 kb/s
       Chapter #0:0: start 0.000000, end 348.214000
       Metadata:
         title           : Chapter 1
       Chapter #0:1: start 348.214000, end 676.542000
       Metadata:
         title           : Chapter 2
       Chapter #0:2: start 676.542000, end 860.058000
       Metadata:
         title           : Chapter 3
       Chapter #0:3: start 860.058000, end 1171.836000
       Metadata:
         title           : Chapter 4
       Chapter #0:4: start 1171.836000, end 1441.839000
       Metadata:
         title           : Chapter 5
       Chapter #0:5: start 1441.839000, end 1632.129000
       Metadata:
         title           : Chapter 6
       Chapter #0:6: start 1632.129000, end 1925.422000
       Metadata:
         title           : Chapter 7
       Chapter #0:7: start 1925.422000, end 2167.030000
       Metadata:
         title           : Chapter 8
       Chapter #0:8: start 2167.030000, end 2409.605000
       Metadata:
         title           : Chapter 9
       Chapter #0:9: start 2409.605000, end 2748.276000
       Metadata:
         title           : Chapter 10
       Chapter #0:10: start 2748.276000, end 2917.945000
       Metadata:
         title           : Chapter 11
       Chapter #0:11: start 2917.945000, end 3309.502000
       Metadata:
         title           : Chapter 12
       Chapter #0:12: start 3309.502000, end 3634.660000
       Metadata:
         title           : Chapter 13
       Chapter #0:13: start 3634.660000, end 3942.434000
       Metadata:
         title           : Chapter 14
       Chapter #0:14: start 3942.434000, end 4101.626000
       Metadata:
         title           : Chapter 15
       Chapter #0:15: start 4101.626000, end 4336.193000
       Metadata:
         title           : Chapter 16
       Chapter #0:16: start 4336.193000, end 4620.643000
       Metadata:
         title           : Chapter 17
       Chapter #0:17: start 4620.643000, end 4873.729000
       Metadata:
         title           : Chapter 18
       Chapter #0:18: start 4873.729000, end 5153.341000
       Metadata:
         title           : Chapter 19
       Chapter #0:19: start 5153.341000, end 5342.796000
       Metadata:
         title           : Chapter 20
       Stream #0:0(und): Video: h264 (Constrained Baseline) (avc1 / 0x31637661), yuv420p(tv, smpte170m/smpte170m/bt709), 720x356 [SAR 32:27 DAR 640:267], 716 kb/s, 23.98 fps, 59.94 tbr, 90k tbn, 180k tbc (default)
       Metadata:
         creation_time   : 2014-10-20T13:01:06.000000Z
         encoder         : JVT/AVC Coding
       Stream #0:1(eng): Audio: aac (LC) (mp4a / 0x6134706D), 48000 Hz, stereo, fltp, 159 kb/s (default)
       Metadata:
         creation_time   : 2014-10-20T13:01:06.000000Z
       Stream #0:2(eng): Audio: ac3 (ac-3 / 0x332D6361), 48000 Hz, 5.1(side), fltp, 448 kb/s
       Metadata:
         creation_time   : 2014-10-20T13:01:06.000000Z
       Side data:
         audio service type: main
       Stream #0:3(und): Data: bin_data (text / 0x74786574)
       Metadata:
         creation_time   : 2014-10-21T13:42:00.000000Z
       Stream #0:4: Video: png, rgb24(pc), 1400x2100, 90k tbr, 90k tbn, 90k tbc
    Unsupported codec with id 100359 for input stream 3
    [STREAM]
    index=0
    codec_name=h264
    codec_long_name=H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10
    profile=Constrained Baseline
    codec_type=video
    codec_time_base=40071281/1921695000
    codec_tag_string=avc1
    codec_tag=0x31637661
    width=720
    height=356
    coded_width=720
    coded_height=356
    has_b_frames=0
    sample_aspect_ratio=32:27
    display_aspect_ratio=640:267
    pix_fmt=yuv420p
    level=30
    color_range=tv
    color_space=smpte170m
    color_transfer=bt709
    color_primaries=smpte170m
    chroma_location=left
    field_order=unknown
    timecode=N/A
    refs=1
    is_avc=true
    nal_length_size=4
    id=N/A
    r_frame_rate=60000/1001
    avg_frame_rate=960847500/40071281
    time_base=1/90000
    start_pts=0
    start_time=0.000000
    duration_ts=480855372
    duration=5342.837467
    bit_rate=716167
    max_bit_rate=N/A
    bits_per_raw_sample=8
    nb_frames=128113
    nb_read_frames=N/A
    nb_read_packets=N/A
    DISPOSITION:default=1
    DISPOSITION:dub=0
    DISPOSITION:original=0
    DISPOSITION:comment=0
    DISPOSITION:lyrics=0
    DISPOSITION:karaoke=0
    DISPOSITION:forced=0
    DISPOSITION:hearing_impaired=0
    DISPOSITION:visual_impaired=0
    DISPOSITION:clean_effects=0
    DISPOSITION:attached_pic=0
    DISPOSITION:timed_thumbnails=0
    TAG:creation_time=2014-10-20T13:01:06.000000Z
    TAG:language=und
    TAG:encoder=JVT/AVC Coding
    [/STREAM]
    [STREAM]
    index=1
    codec_name=aac
    codec_long_name=AAC (Advanced Audio Coding)
    profile=LC
    codec_type=audio
    codec_time_base=1/48000
    codec_tag_string=mp4a
    codec_tag=0x6134706d
    sample_fmt=fltp
    sample_rate=48000
    channels=2
    channel_layout=stereo
    bits_per_sample=0
    id=N/A
    r_frame_rate=0/0
    avg_frame_rate=0/0
    time_base=1/48000
    start_pts=0
    start_time=0.000000
    duration_ts=256454656
    duration=5342.805333
    bit_rate=159788
    max_bit_rate=321176
    bits_per_raw_sample=N/A
    nb_frames=250444
    nb_read_frames=N/A
    nb_read_packets=N/A
    DISPOSITION:default=1
    DISPOSITION:dub=0
    DISPOSITION:original=0
    DISPOSITION:comment=0
    DISPOSITION:lyrics=0
    DISPOSITION:karaoke=0
    DISPOSITION:forced=0
    DISPOSITION:hearing_impaired=0
    DISPOSITION:visual_impaired=0
    DISPOSITION:clean_effects=0
    DISPOSITION:attached_pic=0
    DISPOSITION:timed_thumbnails=0
    TAG:creation_time=2014-10-20T13:01:06.000000Z
    TAG:language=eng
    [/STREAM]
    [STREAM]
    index=2
    codec_name=ac3
    codec_long_name=ATSC A/52A (AC-3)
    profile=unknown
    codec_type=audio
    codec_time_base=1/48000
    codec_tag_string=ac-3
    codec_tag=0x332d6361
    sample_fmt=fltp
    sample_rate=48000
    channels=6
    channel_layout=5.1(side)
    bits_per_sample=0
    dmix_mode=-1
    ltrt_cmixlev=-1.000000
    ltrt_surmixlev=-1.000000
    loro_cmixlev=-1.000000
    loro_surmixlev=-1.000000
    id=N/A
    r_frame_rate=0/0
    avg_frame_rate=0/0
    time_base=1/48000
    start_pts=0
    start_time=0.000000
    duration_ts=256453632
    duration=5342.784000
    bit_rate=448000
    max_bit_rate=N/A
    bits_per_raw_sample=N/A
    nb_frames=166962
    nb_read_frames=N/A
    nb_read_packets=N/A
    DISPOSITION:default=0
    DISPOSITION:dub=0
    DISPOSITION:original=0
    DISPOSITION:comment=0
    DISPOSITION:lyrics=0
    DISPOSITION:karaoke=0
    DISPOSITION:forced=0
    DISPOSITION:hearing_impaired=0
    DISPOSITION:visual_impaired=0
    DISPOSITION:clean_effects=0
    DISPOSITION:attached_pic=0
    DISPOSITION:timed_thumbnails=0
    TAG:creation_time=2014-10-20T13:01:06.000000Z
    TAG:language=eng
    [SIDE_DATA]
    side_data_type=Audio Service Type
    [/SIDE_DATA]
    [/STREAM]
    [STREAM]
    index=3
    codec_name=bin_data
    codec_long_name=binary data
    profile=unknown
    codec_type=data
    codec_tag_string=text
    codec_tag=0x74786574
    id=N/A
    r_frame_rate=0/0
    avg_frame_rate=0/0
    time_base=1/1000
    start_pts=0
    start_time=0.000000
    duration_ts=5342837
    duration=5342.837000
    bit_rate=N/A
    max_bit_rate=N/A
    bits_per_raw_sample=N/A
    nb_frames=20
    nb_read_frames=N/A
    nb_read_packets=N/A
    DISPOSITION:default=0
    DISPOSITION:dub=0
    DISPOSITION:original=0
    DISPOSITION:comment=0
    DISPOSITION:lyrics=0
    DISPOSITION:karaoke=0
    DISPOSITION:forced=0
    DISPOSITION:hearing_impaired=0
    DISPOSITION:visual_impaired=0
    DISPOSITION:clean_effects=0
    DISPOSITION:attached_pic=0
    DISPOSITION:timed_thumbnails=0
    TAG:creation_time=2014-10-21T13:42:00.000000Z
    TAG:language=und
    [/STREAM]
    [STREAM]
    index=4
    codec_name=png
    codec_long_name=PNG (Portable Network Graphics) image
    profile=unknown
    codec_type=video
    codec_time_base=0/1
    codec_tag_string=[0][0][0][0]
    codec_tag=0x0000
    width=1400
    height=2100
    coded_width=1400
    coded_height=2100
    has_b_frames=0
    sample_aspect_ratio=0:1
    display_aspect_ratio=0:1
    pix_fmt=rgb24
    level=-99
    color_range=pc
    color_space=unknown
    color_transfer=unknown
    color_primaries=unknown
    chroma_location=unspecified
    field_order=unknown
    timecode=N/A
    refs=1
    id=N/A
    r_frame_rate=90000/1
    avg_frame_rate=0/0
    time_base=1/90000
    start_pts=0
    start_time=0.000000
    duration_ts=480855372
    duration=5342.837467
    bit_rate=N/A
    max_bit_rate=N/A
    bits_per_raw_sample=N/A
    nb_frames=N/A
    nb_read_frames=N/A
    nb_read_packets=N/A
    DISPOSITION:default=0
    DISPOSITION:dub=0
    DISPOSITION:original=0
    DISPOSITION:comment=0
    DISPOSITION:lyrics=0
    DISPOSITION:karaoke=0
    DISPOSITION:forced=0
    DISPOSITION:hearing_impaired=0
    DISPOSITION:visual_impaired=0
    DISPOSITION:clean_effects=0
    DISPOSITION:attached_pic=1
    DISPOSITION:timed_thumbnails=0
    [/STREAM]

    Thanks. Brian

  • What is Multi-Touch Attribution ? (And How To Get Started)

    2 février 2023, par Erin — Analytics Tips

    Good marketing thrives on data. Or more precisely — its interpretation. Using modern analytics software, we can determine which marketing actions steer prospects towards the desired action (a conversion event). 

    An attribution model in marketing is a set of rules that determine how various marketing tactics and channels impact the visitor’s progress towards a conversion. 

    Yet, as customer journeys become more complicated and involve multiple “touches”, standard marketing reports no longer tell the full picture. 

    That’s when multi-touch attribution analysis comes to the fore. 

    What is Multi-Touch Attribution ?

    Multi-touch attribution (also known as multi-channel attribution or cross-channel attribution) measures the impact of all touchpoints on the consumer journey on conversion. 

    Unlike single-touch reporting, multi-touch attribution models give credit to each marketing element — a social media ad, an on-site banner, an email link click, etc. By seeing impacts from every touchpoint and channel, marketers can avoid false assumptions or subpar budget allocations.

    To better understand the concept, let’s interpret the same customer journey using a standard single-touch report vs a multi-touch attribution model. 

    Picture this : Jammie is shopping around for a privacy-centred web analytics solution. She saw a recommendation on Twitter and ended up on the Matomo website. After browsing a few product pages and checking comparisons with other web analytics tools, she signs up for a webinar. One week after attending, Jammie is convinced that Matomo is the right tool for her business and goes directly to the Matomo website a starts a free trial. 

    • A standard single-touch report would attribute 100% of the conversion to direct traffic, which doesn’t give an accurate view of the multiple touchpoints that led Jammie to start a free trial. 
    • A multi-channel attribution report would showcase all the channels involved in the free trial conversion — social media, website content, the webinar, and then the direct traffic source.

    In other words : Multi-touch attribution helps you understand how prospects move through the sales funnel and which elements tinder them towards the desired outcome. 

    Types of Attribution Models

    As marketers, we know that multiple factors play into a conversion — channel type, timing, user’s stage on the buyer journey and so on. Various attribution models exist to reflect this variability. 

    Types of Attribution Models

    First Interaction attribution model (otherwise known as first touch) gives all credit for the conversion to the first channel (for example — a referral link) and doesn’t report on all the other interactions a user had with your company (e.g., clicked a newsletter link, engaged with a landing page, or browsed the blog campaign).

    First-touch helps optimise the top of your funnel and establish which channels bring the best leads. However, it doesn’t offer any insight into other factors that persuaded a user to convert. 

    Last Interaction attribution model (also known as last touch) allocates 100% credit to the last channel before conversion — be it direct traffic, paid ad, or an internal product page.

    The data is useful for optimising the bottom-of-the-funnel (BoFU) elements. But you have no visibility into assisted conversions — interactions a user had prior to conversion. 

    Last Non-Direct attribution model model excludes direct traffic and assigns 100% credit for a conversion to the last channel a user interacted with before converting. For instance, a social media post will receive 100% of credit if a shopper buys a product three days later. 

    This model is more telling about the other channels, involved in the sales process. Yet, you’re seeing only one step backwards, which may not be sufficient for companies with longer sales cycles.

    Linear attribution model distributes an equal credit for a conversion between all tracked touchpoints.

    For instance, with a four touchpoint conversion (e.g., an organic visit, then a direct visit, then a social visit, then a visit and conversion from an ad campaign) each touchpoint would receive 25% credit for that single conversion.

    This is the simplest multi-channel attribution modelling technique many tools support. The nuance is that linear models don’t reflect the true impact of various events. After all, a paid ad that introduced your brand to the shopper and a time-sensitive discount code at the checkout page probably did more than the blog content a shopper browsed in between. 

    Position Based attribution model allocates a 40% credit to the first and the last touchpoints and then spreads the remaining 20% across the touchpoints between the first and last. 

    This attribution model comes in handy for optimising conversions across the top and the bottom of the funnel. But it doesn’t provide much insight into the middle, which can skew your decision-making. For instance, you may overlook cases when a shopper landed via a social media post, then was re-engaged via email, and proceeded to checkout after an organic visit. Without email marketing, that sale may not have happened.

    Time decay attribution model adjusts the credit, based on the timing of the interactions. Touchpoints that preceded the conversion get the highest score, while the first ones get less weight (e.g., 5%-5%-10%-15%-25%-30%).

    This multi-channel attribution model works great for tracking the bottom of the funnel, but it underestimates the impact of brand awareness campaigns or assisted conversions at mid-stage. 

    Why Use Multi-Touch Attribution Modelling

    Multi-touch attribution provides you with the full picture of your funnel. With accurate data across all touchpoints, you can employ targeted conversion rate optimisation (CRO) strategies to maximise the impact of each campaign. 

    Most marketers and analysts prefer using multi-touch attribution modelling — and for some good reasons.

    Issues multi-touch attribution solves 

    • Funnel visibility. Understand which tactics play an important role at the top, middle and bottom of your funnel, instead of second-guessing what’s working or not. 
    • Budget allocations. Spend money on channels and tactics that bring a positive return on investment (ROI). 
    • Assisted conversions. Learn how different elements and touchpoints cumulatively contribute to the ultimate goal — a conversion event — to optimise accordingly. 
    • Channel segmentation. Determine which assets drive the most qualified and engaged leads to replicate them at scale.
    • Campaign benchmarking. Compare how different marketing activities from affiliate marketing to social media perform against the same metrics.

    How To Get Started With Multi-Touch Attribution 

    To make multi-touch attribution part of your analytics setup, follow the next steps :

    1. Define Your Marketing Objectives 

    Multi-touch attribution helps you better understand what led people to convert on your site. But to capture that, you need to first map the standard purchase journeys, which include a series of touchpoints — instances, when a prospect forms an opinion about your business.

    Touchpoints include :

    • On-site interactions (e.g., reading a blog post, browsing product pages, using an on-site calculator, etc.)
    • Off-site interactions (e.g., reading a review, clicking a social media link, interacting with an ad, etc.)

    Combined these interactions make up your sales funnel — a designated path you’ve set up to lead people toward the desired action (aka a conversion). 

    Depending on your business model, you can count any of the following as a conversion :

    • Purchase 
    • Account registration 
    • Free trial request 
    • Contact form submission 
    • Online reservation 
    • Demo call request 
    • Newsletter subscription

    So your first task is to create a set of conversion objectives for your business and add them as Goals or Conversions in your web analytics solution. Then brainstorm how various touchpoints contribute to these objectives. 

    Web analytics tools with multi-channel attribution, like Matomo, allow you to obtain an extra dimension of data on touchpoints via Tracked Events. Using Event Tracking, you can analyse how many people started doing a desired action (e.g., typing details into the form) but never completed the task. This way you can quickly identify “leaking” touchpoints in your funnel and fix them. 

    2. Select an Attribution Model 

    Multi-attribution models have inherent tradeoffs. Linear attribution model doesn’t always represent the role and importance of each channel. Position-based attribution model emphasises the role of the last and first channel while diminishing the importance of assisted conversions. Time-decay model, on the contrary, downplays the role awareness-related campaigns played.

    To select the right attribution model for your business consider your objectives. Is it more important for you to understand your best top of funnel channels to optimise customer acquisition costs (CAC) ? Or would you rather maximise your on-site conversion rates ? 

    Your industry and the average cycle length should also guide your choice. Position-based models can work best for eCommerce and SaaS businesses where both CAC and on-site conversion rates play an important role. Manufacturing companies or educational services providers, on the contrary, will benefit more from a time-decay model as it better represents the lengthy sales cycles. 

    3. Collect and Organise Data From All Touchpoints 

    Multi-touch attribution models are based on available funnel data. So to get started, you will need to determine which data sources you have and how to best leverage them for attribution modelling. 

    Types of data you should collect : 

    • General web analytics data : Insights on visitors’ on-site actions — visited pages, clicked links, form submissions and more.
    • Goals (Conversions) : Reports on successful conversions across different types of assets. 
    • Behavioural user data : Some tools also offer advanced features such as heatmaps, session recording and A/B tests. These too provide ample data into user behaviours, which you can use to map and optimise various touchpoints.

    You can also implement extra tracking, for instance for contact form submissions, live chat contacts or email marketing campaigns to identify repeat users in your system. Just remember to stay on the good side of data protection laws and respect your visitors’ privacy. 

    Separately, you can obtain top-of-the-funnel data by analysing referral traffic sources (channel, campaign type, used keyword, etc). A Tag Manager comes in handy as it allows you to zoom in on particular assets (e.g., a newsletter, an affiliate, a social campaign, etc). 

    Combined, these data points can be parsed by an app, supporting multi-touch attribution (or a custom algorithm) and reported back to you as specific findings. 

    Sounds easy, right ? Well, the devil is in the details. Getting ample, accurate data for multi-touch attribution modelling isn’t easy. 

    Marketing analytics has an accuracy problem, mainly for two reasons :

    • Cookie consent banner rejection 
    • Data sampling application

    Please note that we are not able to provide legal advice, so it’s important that you consult with your own DPO to ensure compliance with all relevant laws and regulations.

    If you’re collecting web analytics in the EU, you know that showing a cookie consent banner is a GDPR must-do. But many consumers don’t often rush to accept cookie consent banners. The average consent rate for cookies in 2021 stood at 54% in Italy, 45% in France, and 44% in Germany. The consent rates are likely lower in 2023, as Google was forced to roll out a “reject all” button for cookie tracking in Europe, while privacy organisations lodge complaints against individual businesses for deceptive banners. 

    For marketers, cookie rejection means substantial gaps in analytics data. The good news is that you can fill in those gaps by using a privacy-centred web analytics tool like Matomo. 

    Matomo takes extra safeguards to protect user privacy and supports fully cookieless tracking. Because of that, Matomo is legally exempt from tracking consent in France. Plus, you can configure to use our analytics tool without consent banners in other markets outside of Germany and the UK. This way you get to retain the data you need for audience modelling without breaching any privacy regulations. 

    Data sampling application partially stems from the above. When a web analytics or multi-channel attribution tool cannot secure first-hand data, the “guessing game” begins. Google Analytics, as well as other tools, often rely on synthetic AI-generated data to fill in the reporting gaps. Respectively, your multi-attribution model doesn’t depict the real state of affairs. Instead, it shows AI-produced guesstimates of what transpired whenever not enough real-world evidence is available.

    4. Evaluate and Select an Attribution Tool 

    Google Analytics (GA) offers several multi-touch attribution models for free (linear, time-decay and position-based). The disadvantage of GA multi-touch attribution is its lower accuracy due to cookie rejection and data sampling application.

    At the same time, you cannot create custom credit allocations for the proposed models, unless you have the paid version of GA, Google Analytics 360. This version of GA comes with a custom Attribution Modeling Tool (AMT). The price tag, however, starts at USD $50,000 per year. 

    Matomo Cloud offers multi-channel conversion attribution as a feature and it is available as a plug-in on the marketplace for Matomo On-Premise. We support linear, position-based, first-interaction, last-interaction, last non-direct and time-decay modelling, based fully on first-hand data. You also get more precise insights because cookie consent isn’t an issue with us. 

    Most multi-channel attribution tools, like Google Analytics and Matomo, provide out-of-the-box multi-touch attribution models. But other tools, like Matomo On-Premise, also provide full access to raw data so you can develop your own multi-touch attribution models and do custom attribution analysis. The ability to create custom attribution analysis is particularly beneficial for data analysts or organisations with complex and unique buyer journeys. 

    Conclusion

    Ultimately, multi-channel attribution gives marketers greater visibility into the customer journey. By analysing multiple touchpoints, you can establish how various marketing efforts contribute to conversions. Then use this information to inform your promotional strategy, budget allocations and CRO efforts. 

    The key to benefiting the most from multi-touch attribution is accurate data. If your analytics solution isn’t telling you the full story, your multi-touch model won’t either. 

    Collect accurate visitor data for multi-touch attribution modelling with Matomo. Start your free 21-day trial now