
Recherche avancée
Médias (91)
-
Spoon - Revenge !
15 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
My Morning Jacket - One Big Holiday
15 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
Zap Mama - Wadidyusay ?
15 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
David Byrne - My Fair Lady
15 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
Beastie Boys - Now Get Busy
15 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
Granite de l’Aber Ildut
9 septembre 2011, par
Mis à jour : Septembre 2011
Langue : français
Type : Texte
Autres articles (112)
-
Personnaliser en ajoutant son logo, sa bannière ou son image de fond
5 septembre 2013, parCertains thèmes prennent en compte trois éléments de personnalisation : l’ajout d’un logo ; l’ajout d’une bannière l’ajout d’une image de fond ;
-
Personnaliser les catégories
21 juin 2013, parFormulaire de création d’une catégorie
Pour ceux qui connaissent bien SPIP, une catégorie peut être assimilée à une rubrique.
Dans le cas d’un document de type catégorie, les champs proposés par défaut sont : Texte
On peut modifier ce formulaire dans la partie :
Administration > Configuration des masques de formulaire.
Dans le cas d’un document de type média, les champs non affichés par défaut sont : Descriptif rapide
Par ailleurs, c’est dans cette partie configuration qu’on peut indiquer le (...) -
Script d’installation automatique de MediaSPIP
25 avril 2011, parAfin de palier aux difficultés d’installation dues principalement aux dépendances logicielles coté serveur, un script d’installation "tout en un" en bash a été créé afin de faciliter cette étape sur un serveur doté d’une distribution Linux compatible.
Vous devez bénéficier d’un accès SSH à votre serveur et d’un compte "root" afin de l’utiliser, ce qui permettra d’installer les dépendances. Contactez votre hébergeur si vous ne disposez pas de cela.
La documentation de l’utilisation du script d’installation (...)
Sur d’autres sites (13623)
-
What am I doing wrong with my audio writing in ffmpeg ? [on hold]
12 septembre 2014, par Michael NguyenI’m trying to splice multiple video sources into one. I’m having trouble understanding the audio portion of it. Rather I should say, the audio part of my code doesn’t seem to work. I don’t understand it. Could somebody help me understand what I am doing wrong ? The method doing all the work is called renderMovieRequest
Thanks in advance.
My entire code can be found here : http://pastebin.com/rAZkU3XZ
Any help would be appreciated.
below is a snippet of the code (it’s too long otherwise)int64_t timeBase;
bool seek(AVFormatContext *pFormatCtx, int frameIndex){
if(!pFormatCtx)
return false;
int64_t seekTarget = int64_t(frameIndex) * timeBase;
if(av_seek_frame(pFormatCtx, -1, seekTarget, AVSEEK_FLAG_ANY) < 0) {
ELOG("av_seek_frame failed.");
return false;
}
return true;
}
typedef struct OutputStream {
AVStream *st;
/* pts of the next frame that will be generated */
int64_t next_pts;
int samples_count;
AVFrame *frame;
AVFrame *tmp_frame;
float t, tincr, tincr2;
struct SwsContext *sws_ctx;
struct SwrContext *swr_ctx;
} OutputStream;
static int write_frame(AVFormatContext *fmt_ctx, const AVRational *time_base, AVStream *st, AVPacket *pkt)
{
/* rescale output packet timestamp values from codec to stream timebase */
av_packet_rescale_ts(pkt, *time_base, st->time_base);
pkt->stream_index = st->index;
/* Write the compressed frame to the media file. */
log_packet(fmt_ctx, pkt);
return av_interleaved_write_frame(fmt_ctx, pkt);
}
/* Add an output stream. */
static void add_stream(OutputStream *ost, AVFormatContext *oc,
AVCodec **codec,
enum AVCodecID codec_id) {
AVCodecContext *c;
int i;
/* find the encoder */
*codec = avcodec_find_encoder(codec_id);
if (!(*codec)) {
ELOG("Could not find encoder for '%s'\n", avcodec_get_name(codec_id));
return;
}
ost->st = avformat_new_stream(oc, *codec);
if (!ost->st) {
ELOG("Could not allocate stream\n");
return;
}
ost->st->id = oc->nb_streams-1;
c = ost->st->codec;
switch ((*codec)->type) {
case AVMEDIA_TYPE_AUDIO:
c->sample_fmt = (*codec)->sample_fmts ?
(*codec)->sample_fmts[0] : AV_SAMPLE_FMT_FLTP;
c->bit_rate = 64000;
c->sample_rate = 44100;
if ((*codec)->supported_samplerates) {
c->sample_rate = (*codec)->supported_samplerates[0];
for (i = 0; (*codec)->supported_samplerates[i]; i++) {
if ((*codec)->supported_samplerates[i] == 44100)
c->sample_rate = 44100;
}
}
c->channels = av_get_channel_layout_nb_channels(c->channel_layout);
c->channel_layout = AV_CH_LAYOUT_STEREO;
if ((*codec)->channel_layouts) {
c->channel_layout = (*codec)->channel_layouts[0];
for (i = 0; (*codec)->channel_layouts[i]; i++) {
if ((*codec)->channel_layouts[i] == AV_CH_LAYOUT_STEREO)
c->channel_layout = AV_CH_LAYOUT_STEREO;
}
}
c->channels = av_get_channel_layout_nb_channels(c->channel_layout);
ost->st->time_base = (AVRational){ 1, c->sample_rate };
break;
case AVMEDIA_TYPE_VIDEO:
c->codec_id = codec_id;
c->bit_rate = 400000;
/* Resolution must be a multiple of two. */
// c->width = 352;
// c->height = 288;
c->width = 1280;
c->height = 720;
/* timebase: This is the fundamental unit of time (in seconds) in terms
* of which frame timestamps are represented. For fixed-fps content,
* timebase should be 1/framerate and timestamp increments should be
* identical to 1. */
ost->st->time_base = (AVRational){ 1, STREAM_FRAME_RATE };
c->time_base = ost->st->time_base;
c->gop_size = 12; /* emit one intra frame every twelve frames at most */
c->pix_fmt = STREAM_PIX_FMT;
if (c->codec_id == AV_CODEC_ID_MPEG2VIDEO) {
/* just for testing, we also add B frames */
c->max_b_frames = 2;
}
if (c->codec_id == AV_CODEC_ID_MPEG1VIDEO) {
/* Needed to avoid using macroblocks in which some coeffs overflow.
* This does not happen with normal video, it just happens here as
* the motion of the chroma plane does not match the luma plane. */
c->mb_decision = 2;
}
break;
default:
break;
}
/* Some formats want stream headers to be separate. */
if (oc->oformat->flags & AVFMT_GLOBALHEADER)
c->flags |= CODEC_FLAG_GLOBAL_HEADER;
}
/**************************************************************/
/* audio output */
static AVFrame *alloc_audio_frame(enum AVSampleFormat sample_fmt,
uint64_t channel_layout,
int sample_rate, int nb_samples)
{
AVFrame *frame = av_frame_alloc();
int ret;
if (!frame) {
fprintf(stderr, "Error allocating an audio frame\n");
exit(1);
}
frame->format = sample_fmt;
frame->channel_layout = channel_layout;
frame->sample_rate = sample_rate;
frame->nb_samples = nb_samples;
if (nb_samples) {
ret = av_frame_get_buffer(frame, 0);
if (ret < 0) {
fprintf(stderr, "Error allocating an audio buffer\n");
exit(1);
}
}
return frame;
}
static int open_audio(AVFormatContext *oc, AVCodec *codec, OutputStream *ost, AVDictionary *opt_arg)
{
AVCodecContext *c;
int nb_samples;
int ret;
AVDictionary *opt = NULL;
c = ost->st->codec;
/* open it */
av_dict_copy(&opt, opt_arg, 0);
ret = avcodec_open2(c, codec, &opt);
av_dict_free(&opt);
if (ret < 0) {
ELOG("Could not open audio codec: %s\n", av_err2str(ret));
return ret;
}
/* init signal generator */
ost->t = 0;
ost->tincr = 2 * M_PI * 110.0 / c->sample_rate;
/* increment frequency by 110 Hz per second */
ost->tincr2 = 2 * M_PI * 110.0 / c->sample_rate / c->sample_rate;
if (c->codec->capabilities & CODEC_CAP_VARIABLE_FRAME_SIZE)
nb_samples = 10000;
else
nb_samples = c->frame_size;
ost->frame = alloc_audio_frame(c->sample_fmt, c->channel_layout,
c->sample_rate, nb_samples);
ost->tmp_frame = alloc_audio_frame(AV_SAMPLE_FMT_S16, c->channel_layout,
c->sample_rate, nb_samples);
/* create resampler context */
ost->swr_ctx = swr_alloc();
if (!ost->swr_ctx) {
ELOG("Could not allocate resampler context\n");
return -300;
}
/* set options */
av_opt_set_int (ost->swr_ctx, "in_channel_count", c->channels, 0);
av_opt_set_int (ost->swr_ctx, "in_sample_rate", c->sample_rate, 0);
av_opt_set_sample_fmt(ost->swr_ctx, "in_sample_fmt", AV_SAMPLE_FMT_S16, 0);
av_opt_set_int (ost->swr_ctx, "out_channel_count", c->channels, 0);
av_opt_set_int (ost->swr_ctx, "out_sample_rate", c->sample_rate, 0);
av_opt_set_sample_fmt(ost->swr_ctx, "out_sample_fmt", c->sample_fmt, 0);
/* initialize the resampling context */
if ((ret = swr_init(ost->swr_ctx)) < 0) {
ELOG("Failed to initialize the resampling context: %i\n", ret);
return ret;
}
return 0;
}
/*
* encode one audio frame and send it to the muxer
* return 1 when encoding is finished, 0 otherwise
*/
static int write_audio_frame(AVFormatContext *oc, OutputStream *ost, AVFrame *frame)
{
AVCodecContext *c;
AVPacket pkt = { 0 }; // data and size must be 0;
// AVFrame *frame;
int ret;
int got_packet;
int dst_nb_samples;
av_init_packet(&pkt);
c = ost->st->codec;
// frame = get_audio_frame(ost);
if (frame) {
/* convert samples from native format to destination codec format, using the resampler */
/* compute destination number of samples */
dst_nb_samples = av_rescale_rnd(swr_get_delay(ost->swr_ctx, c->sample_rate) + frame->nb_samples,
c->sample_rate, c->sample_rate, AV_ROUND_UP);
av_assert0(dst_nb_samples == frame->nb_samples);
/* when we pass a frame to the encoder, it may keep a reference to it
* internally;
* make sure we do not overwrite it here
*/
ret = av_frame_make_writable(ost->frame);
if (ret < 0) {
ELOG("Unable to prepare frame for writing: Error code: %s", av_err2str(ret));
return ret;
}
/* convert to destination format */
ret = swr_convert(ost->swr_ctx,
ost->frame->data, dst_nb_samples,
(const uint8_t **)frame->data, frame->nb_samples);
if (ret < 0) {
ELOG("Error while converting: %s\n", av_err2str(ret));
return -1;
}
frame = ost->frame;
frame->pts = av_rescale_q(ost->samples_count, (AVRational){1, c->sample_rate}, c->time_base);
ost->samples_count += dst_nb_samples;
}
ret = avcodec_encode_audio2(c, &pkt, frame, &got_packet);
if (ret < 0) {
ELOG("Error encoding audio frame: %s\n", av_err2str(ret));
return -1;
}
if (got_packet) {
ret = write_frame(oc, &c->time_base, ost->st, &pkt);
if (ret < 0) {
ELOG( "Error while writing audio frame: %s\n", av_err2str(ret));
return -1;
}
}
return (frame || got_packet) ? 0 : 1;
}
/**************************************************************/
/* video output */
static AVFrame *alloc_picture(enum AVPixelFormat pix_fmt, int width, int height)
{
AVFrame *picture;
int ret;
picture = av_frame_alloc();
if (!picture)
return NULL;
picture->format = pix_fmt;
picture->width = width;
picture->height = height;
/* allocate the buffers for the frame data */
ret = av_frame_get_buffer(picture, 32);
if (ret < 0) {
fprintf(stderr, "Could not allocate frame data.\n");
exit(1);
}
return picture;
}
static int open_video(AVFormatContext *oc, AVCodec *codec, OutputStream *ost, AVDictionary *opt_arg)
{
int ret;
AVCodecContext *c = ost->st->codec;
AVDictionary *opt = NULL;
av_dict_copy(&opt, opt_arg, 0);
/* open the codec */
ret = avcodec_open2(c, codec, &opt);
av_dict_free(&opt);
if (ret < 0) {
ELOG("Could not open video codec: %s\n", av_err2str(ret));
return ret;
}
/* allocate and init a re-usable frame */
DLOG("Allocate and init a are-usable frame: %i x %i Format: %i", c->width, c->height, c->pix_fmt);
ost->frame = alloc_picture(c->pix_fmt, c->width, c->height);
if (!ost->frame) {
ELOG("Could not allocate video frame\n");
return -100;
}
/* If the output format is not YUV420P, then a temporary YUV420P
* picture is needed too. It is then converted to the required
* output format. */
ost->tmp_frame = NULL;
if (c->pix_fmt != AV_PIX_FMT_YUV420P) {
DLOG("input format is not YUV420P converting to size %i x %i", c->width, c->height);
ost->tmp_frame = alloc_picture(AV_PIX_FMT_YUV420P, c->width, c->height);
if (!ost->tmp_frame) {
ELOG("Could not allocate temporary picture\n");
return -200;
}
}
return 0;
}
/*
* encode one video frame and send it to the muxer
* return 1 when encoding is finished, 0 otherwise
*/
static int write_video_frame(AVFormatContext *oc, OutputStream *ost, AVFrame *frame)
{
int ret;
AVCodecContext *c;
int got_packet = 0;
c = ost->st->codec;
if (oc->oformat->flags & AVFMT_RAWPICTURE) {
/* a hack to avoid data copy with some raw video muxers */
AVPacket pkt;
av_init_packet(&pkt);
if (!frame)
return 1;
pkt.flags |= AV_PKT_FLAG_KEY;
pkt.stream_index = ost->st->index;
pkt.data = (uint8_t *)frame;
pkt.size = sizeof(AVPicture);
pkt.pts = pkt.dts = frame->pts;
av_packet_rescale_ts(&pkt, c->time_base, ost->st->time_base);
ret = av_interleaved_write_frame(oc, &pkt);
} else {
AVPacket pkt = { 0 };
av_init_packet(&pkt);
/* encode the image */
ret = avcodec_encode_video2(c, &pkt, frame, &got_packet);
if (ret < 0) {
fprintf(stderr, "Error encoding video frame: %s\n", av_err2str(ret));
exit(1);
}
if (got_packet) {
ret = write_frame(oc, &c->time_base, ost->st, &pkt);
} else {
ret = 0;
}
}
if (ret < 0) {
fprintf(stderr, "Error while writing video frame: %s\n", av_err2str(ret));
exit(1);
}
return (frame || got_packet) ? 0 : 1;
}
static void close_stream(AVFormatContext *oc, OutputStream *ost)
{
avcodec_close(ost->st->codec);
av_frame_free(&ost->frame);
av_frame_free(&ost->tmp_frame);
sws_freeContext(ost->sws_ctx);
swr_free(&ost->swr_ctx);
}
int renderMovieRequest(movieRequest *movieRequestObj, string outputPath) {
AVOutputFormat *ofmt = NULL;
AVFormatContext *ifmt_ctx = NULL, *ofmt_ctx = NULL;
AVFormatContext *pFormatCtx = NULL;
AVCodec *audio_codec, *video_codec;
OutputStream video_st = { 0 }, audio_st = { 0 };
size_t i;
int videoStream, audioStream;
AVCodecContext *pCodecCtx = NULL;
AVCodec *pCodec = NULL;
AVFrame *pFrame = NULL;
AVFrame *pFrameRGB = NULL;
AVPacket packet = { 0 };
int frameFinished;
int audioFrameFinished;
int numBytes;
uint8_t *buffer = NULL;
AVDictionary *optionsDict = NULL;
AVDictionary *opt = NULL;
struct SwsContext *sws_ctx = NULL;
const char *in_filename, *out_filename;
int ret;
int have_audio = 0, have_video = 0;
int encode_audio = 0, encode_video = 0;
processProtobuf(movieRequestObj);
out_filename = outputPath.c_str();
av_register_all();
DLOG("attempting to create context for output file %s", out_filename);
avformat_alloc_output_context2(&ofmt_ctx, NULL, NULL, out_filename);
if (!ofmt_ctx) {
ELOG("Could not create output context\n");
ret = AVERROR_UNKNOWN;
return ret; //goto end;
}
ofmt = ofmt_ctx->oformat;
/* Add the audio and video streams using the default format codecs
* and initialize the codecs. */
if (ofmt->video_codec != AV_CODEC_ID_NONE) {
add_stream(&video_st, ofmt_ctx, &video_codec, ofmt->video_codec);
have_video = 1;
encode_video = 1;
}
if (ofmt->audio_codec != AV_CODEC_ID_NONE) {
add_stream(&audio_st, ofmt_ctx, &audio_codec, ofmt->audio_codec);
have_audio = 1;
encode_audio = 1;
}
DLOG("allocate encode buffers");
/* Now that all the parameters are set, we can open the audio and
* video codecs and allocate the necessary encode buffers. */
if (have_video)
open_video(ofmt_ctx, video_codec, &video_st, opt);
if (have_audio) {
DLOG("Opening audio codec");
open_audio(ofmt_ctx, audio_codec, &audio_st, opt);
}
DLOG("open output file for writing");
/* open the output file, if needed */
if (!(ofmt->flags & AVFMT_NOFILE)) {
ret = avio_open(&ofmt_ctx->pb, out_filename, AVIO_FLAG_WRITE);
if (ret < 0) {
ELOG( "Could not open '%s': %s\n", out_filename, av_err2str(ret));
return 1;
}
}
/* Write the stream header, if any. */
ret = avformat_write_header(ofmt_ctx, &opt);
if (ret < 0) {
ELOG("Error occurred when opening output file: %s\n", av_err2str(ret));
return 1;
}
vector<clipshptr> * clips = &(movieRequestObj->clips);
DLOG("ready to process clips: %i", clips->size());
for (size_t clipIdx = 0; clipIdx < clips->size(); ++clipIdx) {
shared_ptr<clip> currentClip = clips->at(clipIdx);
switch (currentClip->getClipType()) {
case VIDEO_CLIP: {
DLOG("clip is a video clip...");
shared_ptr<videoclip> vidClip = dynamic_pointer_cast<videoclip>(clips->at(clipIdx));
if (vidClip->shouldHaveSegments) {
// open the file for reading and create a temporary file for output
in_filename = vidClip->vidFileName.c_str();
DLOG("Opening %s for reading", in_filename);
if ((ret = avformat_open_input(&ifmt_ctx, in_filename, 0, 0)) < 0) {
ELOG("Could not open input file '%s'", in_filename);
return ret; //goto end;
}
if ((ret = avformat_find_stream_info(ifmt_ctx, 0)) < 0) {
ELOG("Failed to retrieve input stream information");
return ret; //goto end;
}
av_dump_format(ifmt_ctx, 0, in_filename, 0);
videoStream = -1;
audioStream = -1;
// setup input format context and output format context;
// AVStream *video_in_stream = NULL;
for (i = 0; i < ifmt_ctx->nb_streams; i++) {
if(ifmt_ctx->streams[i]->codec->codec_type==AVMEDIA_TYPE_VIDEO) {
videoStream=i;
// video_in_stream = ifmt_ctx->streams[i];
}
else if(ifmt_ctx->streams[i]->codec->codec_type==AVMEDIA_TYPE_AUDIO) {
audioStream=i;
// video_in_stream = ifmt_ctx->streams[i];
}
}
if (videoStream == -1) {
DLOG("not a video stream.");
continue;
}
// Get a pointer to the codec context for the video stream
pCodecCtx = ifmt_ctx->streams[videoStream]->codec;
if (pCodecCtx == NULL) {
ELOG("Error in getting pointer to codec for vidstream");
}
DLOG("Input pixel format: %i ", pCodecCtx->pix_fmt);
// Find the decoder for the video stream
pCodec=avcodec_find_decoder(pCodecCtx->codec_id);
if(pCodec==NULL) {
ELOG("Unsupported codec!\n");
return -1; // Codec not found
}
// Open codec
if(avcodec_open2(pCodecCtx, pCodec, &optionsDict)<0) {
ELOG("Unable to open codec");
return -1; // Could not open codec
}
// get the timebase
timeBase = (int64_t(pCodecCtx->time_base.num) * AV_TIME_BASE) / int64_t(pCodecCtx->time_base.den);
// Allocate video frame
pFrame=av_frame_alloc();
// Allocate an AVFrame structure
pFrameRGB=av_frame_alloc();
if(pFrameRGB==NULL)
return -1;
// Determine required buffer size and allocate buffer
// numBytes=avpicture_get_size(PIX_FMT_RGB24, pCodecCtx->width, pCodecCtx->height);
numBytes = avpicture_get_size(PIX_FMT_RGB24, movieRequestObj->width, movieRequestObj->height);
DLOG("Buffer size allocated: %i x %i: %i ", movieRequestObj->width, movieRequestObj->height, numBytes);
buffer=(uint8_t *)av_malloc(numBytes*sizeof(uint8_t));
sws_ctx = sws_getContext
(
pCodecCtx->width,
pCodecCtx->height,
pCodecCtx->pix_fmt,
movieRequestObj->width,
movieRequestObj->height,
PIX_FMT_RGB24,
SWS_BILINEAR,
NULL,
NULL,
NULL
);
// Assign appropriate parts of buffer to image planes in pFrameRGB
// Note that pFrameRGB is an AVFrame, but AVFrame is a superset
// of AVPicture
avpicture_fill((AVPicture *)pFrameRGB, buffer, PIX_FMT_RGB24, movieRequestObj->width, movieRequestObj->height);
size_t numSegments = vidClip->segments.size();
DLOG("Found %i segments to process", numSegments);
for (size_t segmentIdx = 0; segmentIdx < numSegments; ++segmentIdx) {
// seek to the right position
int frameOffset = vidClip->segments.at(segmentIdx).first;
int clipDuration = vidClip->segments.at(segmentIdx).second;
DLOG("Starting Frame Number: %i Duration: %i", frameOffset, clipDuration);
seek(ifmt_ctx, frameOffset);
// loop for X frames where X is < frameOffset + clipDuration; clipDuration is the length of the clip in terms of frames
for (int frameIdx = frameOffset; frameIdx < (frameOffset + clipDuration); ++frameIdx) {
av_init_packet(&packet);
int avReadResult = 0;
int continueRecording = 1;
while ((continueRecording == 1) && (frameIdx < (frameOffset + clipDuration) )) {
avReadResult = av_read_frame(ifmt_ctx, &packet);
if(avReadResult != 0){
if (avReadResult != AVERROR_EOF) {
ELOG("av_read_frame error: %i", avReadResult );
} else {
ILOG("End of input file");
}
continueRecording = 0;
}
// Is this a packet from the video stream?
if(packet.stream_index==videoStream) {
// Decode video frame
avcodec_decode_video2(pCodecCtx, pFrameRGB, &frameFinished, &packet);
// Did we get a video frame?
if(frameFinished) {
// Convert the image from its native format to RGB
sws_scale
(
sws_ctx,
(uint8_t const * const *)pFrame->data,
pFrame->linesize,
0,
pCodecCtx->height,
pFrameRGB->data,
pFrameRGB->linesize
);
write_video_frame(ofmt_ctx, &video_st, pFrameRGB);
frameIdx++;
}
}
else if (packet.stream_index == audioStream) {
// Decode audio frame
DLOG("Audio frame found");
avcodec_decode_audio4(pCodecCtx, pFrameRGB, &audioFrameFinished, &packet);
if (audioFrameFinished) {
// write the audio frame to file
write_audio_frame(ofmt_ctx, &audio_st, pFrameRGB);
}
}
// Free the packet that was allocated by av_read_frame
av_free_packet(&packet);
}
// Free the RGB image
}
}
DLOG("Cleaning up frame allocations");
av_free(buffer);
av_free(pFrameRGB);
// Free the YUV frame
av_free(pFrame);
} // end video clip processing
}
break;
case TITLE_CLIP: {
}
break;
default:
ELOG("Failed to identify clip");
break;
} // end switch statement
DLOG("Finished processing clip #%i", clipIdx);
avformat_close_input(&ifmt_ctx);
} // end main for loop -> clip iteration
/* Write the trailer, if any. The trailer must be written before you
* close the CodecContexts open when you wrote the header; otherwise
* av_write_trailer() may try to use memory that was freed on
* av_codec_close(). */
av_write_trailer(ofmt_ctx);
/* Close each codec. */
if (have_video)
close_stream(ofmt_ctx, &video_st);
if (have_audio)
close_stream(ofmt_ctx, &audio_st);
if (ofmt_ctx && !(ofmt->flags & AVFMT_NOFILE)) {
/* Close the output file. */
avio_close(ofmt_ctx->pb);
}
DLOG("Closing input format context");
avformat_close_input(&ifmt_ctx);
DLOG("Free ouptut format context");
avformat_free_context(ofmt_ctx);
if (ret < 0 && ret != AVERROR_EOF) {
ELOG( "Error occurred: %s\n", av_err2str(ret));
return 1;
}
return 0;
}
#ifdef __cplusplus
}
#endif
</videoclip></videoclip></clip></clipshptr> -
Revision bb4950dfdf : vp9 : correct context buffer resize check allocations within vp9_alloc_context_b
5 septembre 2014, par James ZernChanged Paths :
Modify /test/invalid_file_test.cc
Modify /test/test-data.sha1
Modify /test/test.mk
Modify /vp9/decoder/vp9_decodeframe.c
vp9 : correct context buffer resize checkallocations within vp9_alloc_context_buffers() rely on mi_rows/mi_cols
individually, use those to determine whether to realloc rather than
stride and stride * rows. this fixes a crash with some fuzzed files for
invalid accesses into last_frame_seg_map and above_context.Change-Id : I7b9f40dcf170d443890f3bd2acd285507943c7d4
-
Visualizing Call Graphs Using Gephi
1er septembre 2014, par Multimedia Mike — GeneralWhen I was at university studying computer science, I took a basic chemistry course. During an accompanying lab, the teaching assistant chatted me up and asked about my major. He then said, “Computer science ? Well, that’s just typing stuff, right ?”
My impulsive retort : “Sure, and chemistry is just about mixing together liquids and coming up with different colored liquids, as seen on the cover of my high school chemistry textbook, right ?”
In fact, pure computer science has precious little to do with typing (as is joked in CS circles, computer science is about computers in the same way that astronomy is about telescopes). However, people who study computer science often pursue careers as programmers, or to put it in fancier professional language, software engineers.
So, what’s a software engineer’s job ? Isn’t it just typing ? That’s where I’ve been going with this overly long setup. After thinking about it for long enough, I like to say that a software engineer’s trade is managing complexity.
A few years ago, I discovered Gephi, an open source tool for graph and data visualization. It looked neat but I didn’t have much use for it at the time. Recently, however, I was trying to get a better handle on a large codebase. I.e., I was trying to manage the project’s complexity. And then I thought of Gephi again.
Prior Work
One way to get a grip on a large C codebase is to instrument it for profiling and extract details from the profiler. On Linux systems, this means compiling and linking the code using the -pg flag. After running the executable, there will be a gmon.out file which is post-processed using the gprof command.GNU software development tools have a reputation for being rather powerful and flexible, but also extremely raw. This first hit home when I was learning how to use the GNU tool for code coverage — gcov — and the way it outputs very raw data that you need to massage with other tools in order to get really useful intelligence.
And so it is with gprof output. The output gives you a list of functions sorted by the amount of processing time spent in each. Then it gives you a flattened call tree. This is arranged as “during the profiled executions, function c was called by functions a and b and called functions d, e, and f ; function d was called by function c and called functions g and h”.
How can this call tree data be represented in a more instructive manner that is easier to navigate ? My first impulse (and I don’t think I’m alone in this) is to convert the gprof call tree into a representation suitable for interpretation by Graphviz. Unfortunately, doing so tends to generate some enormous and unwieldy static images.
Feeding gprof Data To Gephi
I learned of Gephi a few years ago and recalled it when I developed an interest in gaining better perspective on a large base of alien C code. To understand what this codebase is doing for a particular use case, instrument it with gprof, gather execution data, and then study the code paths.How could I feed the gprof data into Gephi ? Gephi supports numerous graphing formats including an XML-based format named GEXF.
Thus, the challenge becomes converting gprof output to GEXF.
Demonstration
I have been absent from FFmpeg development for a long time, which is a pity because a lot of interesting development has occurred over the last 2-3 years after a troubling period of stagnation. I know that 2 big video codec developments have been HEVC (next in the line of MPEG codecs) and VP9 (heir to VP8’s throne). FFmpeg implements them both now.I decided I wanted to study the code flow of VP9. So I got the latest FFmpeg code from git and built it using the options
"--extra-cflags=-pg --extra-ldflags=-pg"
. Annoyingly, I also needed to specify"--disable-asm"
because gcc complains of some register allocation snafus when compiling inline ASM in profiling mode (and this is on x86_64). No matter ; ASM isn’t necessary for understanding overall code flow.After compiling, the binary ‘ffmpeg_g’ will have symbols and be instrumented for profiling. I grabbed a sample from this VP9 test vector set and went to work.
./ffmpeg_g -i vp90-2-00-quantizer-00.webm -f null /dev/null gprof ./ffmpeg_g > vp9decode.txt convert-gprof-to-gexf.py vp9decode.txt > /bigdisk/vp9decode.gexf
Gephi loads vp9decode.gexf with no problem. Using Gephi, however, can be a bit challenging if one is not versed in any data exploration jargon. I recommend this Gephi getting starting guide in slide deck form. Here’s what the default graph looks like :
Not very pretty or helpful. BTW, that beefy arrow running from mid-top to lower-right is the call from decode_coeffs_b -> iwht_iwht_4x4_add_c. There were 18774 from the former to the latter in this execution. Right now, the edge thicknesses correlate to number of calls between the nodes, which I’m not sure is the best representation.
Following the tutorial slide deck, I at least learned how to enable the node labels (function symbols in this case) and apply a layout algorithm. The tutorial shows the force atlas layout. Here’s what the node neighborhood looks like for probing file type :
Okay, so that’s not especially surprising– avprobe_input_format3 calls all of the *_probe functions in order to automatically determine input type. Let’s find that decode_coeffs_b function and see what its neighborhood looks like :
That’s not very useful. Perhaps another algorithm might help. I select the Fruchterman–Reingold algorithm instead and get a slightly more coherent representation of the decoding node neighborhood :
Further Work
Obviously, I’m just getting started with this data exploration topic. One thing I would really appreciate in such a tool is the ability to interactively travel the graph since that’s what I’m really hoping to get out of this experiment– watching the code flows.Perhaps someone else can find better use cases for visualizing call graph data. Thus, I have published the source code for this tool at Github.