
Recherche avancée
Médias (17)
-
Matmos - Action at a Distance
15 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
DJ Dolores - Oslodum 2004 (includes (cc) sample of “Oslodum” by Gilberto Gil)
15 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
Danger Mouse & Jemini - What U Sittin’ On ? (starring Cee Lo and Tha Alkaholiks)
15 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
Cornelius - Wataridori 2
15 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
The Rapture - Sister Saviour (Blackstrobe Remix)
15 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
Chuck D with Fine Arts Militia - No Meaning No
15 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
Autres articles (96)
-
MediaSPIP 0.1 Beta version
25 avril 2011, parMediaSPIP 0.1 beta is the first version of MediaSPIP proclaimed as "usable".
The zip file provided here only contains the sources of MediaSPIP in its standalone version.
To get a working installation, you must manually install all-software dependencies on the server.
If you want to use this archive for an installation in "farm mode", you will also need to proceed to other manual (...) -
HTML5 audio and video support
13 avril 2011, parMediaSPIP uses HTML5 video and audio tags to play multimedia files, taking advantage of the latest W3C innovations supported by modern browsers.
The MediaSPIP player used has been created specifically for MediaSPIP and can be easily adapted to fit in with a specific theme.
For older browsers the Flowplayer flash fallback is used.
MediaSPIP allows for media playback on major mobile platforms with the above (...) -
ANNEXE : Les plugins utilisés spécifiquement pour la ferme
5 mars 2010, parLe site central/maître de la ferme a besoin d’utiliser plusieurs plugins supplémentaires vis à vis des canaux pour son bon fonctionnement. le plugin Gestion de la mutualisation ; le plugin inscription3 pour gérer les inscriptions et les demandes de création d’instance de mutualisation dès l’inscription des utilisateurs ; le plugin verifier qui fournit une API de vérification des champs (utilisé par inscription3) ; le plugin champs extras v2 nécessité par inscription3 (...)
Sur d’autres sites (9410)
-
How to save AVPacket if I have input information from online camera
31 mars 2020, par OrestI am new to libav.
I have a online video camera and want save video from archive to the video file with libav



Camera provides such data



uint32_t frameType, // I frame or P frame

void *frame, //pointer to the frame

size_t frameSize, //size of the frame in bytes

uint64_t timeStamp, //time stamp in time_t units

uint32_t width, //frame width

uint32_t height, //frame heigh

uint32_t genTime, //I do not now what is this. allways 0

const char *encodingType //H264 or H265




I tried this



void writeHeader(){
mOutputFilePath = outputFilePath;
 int ret = 0;
 avformat_alloc_output_context2(&output_format_context, nullptr, nullptr, outputFilePath.c_str());

AVStream *out_stream;
 out_stream = avformat_new_stream(output_format_context, nullptr);

 out_stream->discard = AVDISCARD_DEFAULT;//не змінювати
 out_stream->codecpar->level = 42;//не змінювати
 out_stream->codecpar->profile = FF_PROFILE_H264_HIGH;//не змінювати
 out_stream->codecpar->codec_type = AVMEDIA_TYPE_VIDEO;

 if(codecID == "H264") out_stream->codecpar->codec_id = AV_CODEC_ID_H264;
 else if(codecID == "H265") out_stream->codecpar->codec_id = AV_CODEC_ID_H265;

 out_stream->codecpar->format = AV_PIX_FMT_YUV420P;
 out_stream->codecpar->height = heightFrame;
 out_stream->codecpar->width = widthFrame;
 // out_stream->codecpar->bit_rate = 2478235;
 // out_stream->codecpar->bits_per_coded_sample = 24;
 // out_stream->codecpar->bits_per_raw_sample = 8;
 out_stream->codecpar->sample_aspect_ratio.num = 0;
 out_stream->codecpar->sample_aspect_ratio.den = 1;
 out_stream->codecpar->color_primaries = AVCOL_PRI_UNSPECIFIED;//не змінювати

avio_open(&output_format_context->pb, mOutputFilePath.c_str(), AVIO_FLAG_WRITE);
avformat_write_header(output_format_context, &opt);
}

void writePacket(){
 AVPacket inputPacket;
 av_init_packet(&inputPacket);
 inputPacket.buf = NULL;
 inputPacket.pts = (int)timeStamp;
 inputPacket.dts = inputPacket.pts; 
 inputPacket.data = (unsigned char*)frame;
 inputPacket.size = (int)frameSize;

 if (frameType == KP2P_FRAME_TYPE_IFRAME)
 {
 inputPacket.flags = AV_PKT_FLAG_KEY;
 }
 inputPacket.duration = 0;
 inputPacket.pos = -1;
av_interleaved_write_frame(output_format_context, &inputPacket);
 av_packet_unref(&inputPacket);
}

void closeFile()
{
av_write_trailer(output_format_context);
 if (output_format_context && !(output_format_context->oformat->flags & AVFMT_NOFILE))
 avio_closep(&output_format_context->pb);
 avformat_free_context(output_format_context);
}




in output file I have black vindow and time is not correct (input 30 seconds in out 2 seconds)
What am I doing wrong ?


-
avutil/mips : Use MMI_{L, S}QC1 macro in {SAVE, RECOVER}_REG
23 juillet 2021, par Jiaxun Yangavutil/mips : Use MMI_L, SQC1 macro in SAVE, RECOVER_REG
SAVE,RECOVER_REG will be available for Loongson2 again,
also comment about the magic.Signed-off-by : Jiaxun Yang <jiaxun.yang@flygoat.com>
Reviewed-by : Shiyou Yin <yinshiyou-hf@loongson.cn>
Signed-off-by : Michael Niedermayer <michael@niedermayer.cc> -
Python : ani.save very slow. Any alternatives to create videos ?
14 novembre 2023, par CzesklebaIm doing some simple diffusion calculations. I save 2 matrices to 2 datasets every so many steps (every 2s or so) to a single .h5 file. After that I then load the file in another script, create some figures (2 subplots etc., see/run code - i know could be prettier). Then I use matplotlib.animation to make the animation. In the code below, in the very last lines, I then run the ani.save command from matplotlib.


And that's where the problem is. The animation is created within 2 seconds, even for my longer animations (14.755 frames, done in under 2s at 8284 it/s) but after that, ani.save in line 144 takes forever (it didn't finish over night). It reserves/uses about 10gb of my RAM constantly but seemingly takes forever. If you run the code below be sure to set the frames_to_do (line 20) to something like 30 or 60 to see that it does in fact save an mp4 for shorter videos. You can set it higher to see how fast the time to save stuff increases to something unreasonable.


I've been fiddling this for 2 days now and I cant figure it out. I guess my question is : Is there any way to create the video in a reasonable time like this ? Or do I need something other than animation ?


You should be able to just run the code. Ill provide a diffusion_array.h5 with 140 frames so you dont have to create a dummy file, if I can figure out how to upload something like this safely. (The results are with dummy numbers for now, diffusion coefficients etc. are not right yet.)
I used dropbox. Not sure if thats allowed, if not I'll delete the link and uhh PM me or something ?




Here is the code :


import h5py
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
from matplotlib.animation import FuncAnimation
from tqdm import tqdm
import numpy as np


# saving the .mp4 after tho takes forever

# Create an empty figure and axis
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 9), dpi=96)

# Load all saved arrays into a list
file_name = 'diffusion_array.h5'
loaded_u_arrays = []
loaded_h_arrays = []
frames_to_do = 14755 # for now like this, use # version once the slow mp4 convert is cleared up

# with h5py.File(file_name, 'r') as hf:
# for key in hf.keys():
# if key.startswith('u_snapshot_'):
# loaded_u_arrays.append(hf[key][:])
# elif key.startswith('h_snapshot_'):
# loaded_h_arrays.append(hf[key][:])

with h5py.File(file_name, 'r') as hf:
 for i in range(frames_to_do):
 target_key1 = f'u_snapshot_{i:05d}'
 target_key2 = f'h_snapshot_{i:05d}'
 if target_key1 in hf:
 loaded_u_arrays.append(hf[target_key1][:])
 else:
 print(f'Dataset u for time step {i} not found in the file.')
 if target_key2 in hf:
 loaded_h_arrays.append(hf[target_key2][:])
 else:
 print(f'Dataset h for time step {i} not found in the file.')

# Create "empty" imshow objects
# First one
norm1 = mcolors.Normalize(vmin=140, vmax=400)
cmap1 = plt.get_cmap('hot')
cmap1.set_under('0.85')
im1 = ax1.imshow(loaded_u_arrays[0], cmap=cmap1, norm=norm1)
ax1.set_title('Diffusion Heatmap')
ax1.set_xlabel('X')
ax1.set_ylabel('Y')
cbar_ax = fig.add_axes([0.05, 0.15, 0.03, 0.7])
cbar_ax.set_xlabel('$T$ / K', labelpad=20)
fig.colorbar(im1, cax=cbar_ax)


# Second one
ax2 = plt.subplot(1, 2, 2)
norm2 = mcolors.Normalize(vmin=-0.1, vmax=5)
cmap2 = plt.get_cmap('viridis')
cmap2.set_under('0.85')
im2 = ax2.imshow(loaded_h_arrays[0], cmap=cmap2, norm=norm2)
ax2.set_title('Diffusion Hydrogen')
ax2.set_xlabel('X')
ax2.set_ylabel('Y')
cbar_ax = fig.add_axes([0.9, 0.15, 0.03, 0.7])
cbar_ax.set_xlabel('HD in ml/100g', labelpad=20)
fig.colorbar(im2, cax=cbar_ax)

# General
fig.subplots_adjust(right=0.85)
time_text = ax2.text(-15, 0.80, f'Time: {0} s', transform=plt.gca().transAxes, color='black', fontsize=20)

# Annotations
# Heat 1
marker_style = dict(marker='o', markersize=6, markerfacecolor='black', markeredgecolor='black')
ax1.scatter(*[10, 40], s=marker_style['markersize'], c=marker_style['markerfacecolor'],
 edgecolors=marker_style['markeredgecolor'])
ann_heat1 = ax1.annotate(f'Temp: {loaded_u_arrays[0][40, 10]:.0f}', xy=[10, 40], xycoords='data',
 xytext=([10, 40][0], [10, 40][1] + 48), textcoords='data',
 arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=0.3"), fontsize=12, color='black')
# Heat 2
ax1.scatter(*[140, 85], s=marker_style['markersize'], c=marker_style['markerfacecolor'],
 edgecolors=marker_style['markeredgecolor'])
ann_heat2 = ax1.annotate(f'Temp: {loaded_u_arrays[0][85, 140]:.0f}', xy=[140, 85], xycoords='data',
 xytext=([140, 85][0] + 55, [140, 85][1] + 3), textcoords='data',
 arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=0.3"), fontsize=12, color='black')

# Diffusion 1
marker_style = dict(marker='o', markersize=6, markerfacecolor='black', markeredgecolor='black')
ax2.scatter(*[10, 40], s=marker_style['markersize'], c=marker_style['markerfacecolor'],
 edgecolors=marker_style['markeredgecolor'])
ann_diff1 = ax2.annotate(f'HD: {loaded_h_arrays[0][40, 10]:.0f}', xy=[10, 40], xycoords='data',
 xytext=([10, 40][0], [10, 40][1] + 48), textcoords='data',
 arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=0.3"), fontsize=12, color='black')
# Diffusion 2
ax2.scatter(*[140, 85], s=marker_style['markersize'], c=marker_style['markerfacecolor'],
 edgecolors=marker_style['markeredgecolor'])
ann_diff2 = ax2.annotate(f'HD: {loaded_h_arrays[0][85, 140]:.0f}', xy=[140, 85], xycoords='data',
 xytext=([140, 85][0] + 55, [140, 85][1] + 3), textcoords='data',
 arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=0.3"), fontsize=12, color='black')


# Function to update the animation
def update(frame, *args):
 loaded_u_array, loaded_h_array = args

 s_per_frame = 2 # during weld/cooling you save a state every 2s
 frames_to_room_temp = 7803 # that means this many frames need to be animated
 dt_big = 87 # during "just diffusion" you save every 10 frame but 87s pass in those

 # Update the time step shown
 if frame <= frames_to_room_temp:
 im1.set_data(loaded_u_array[frame])
 im2.set_data(loaded_h_array[frame])
 time_text.set_text(f'Time: {frame * s_per_frame} s')

 else:
 im1.set_data(loaded_u_array[frame])
 im2.set_data(loaded_h_array[frame])
 calc_time = int(((2 * frames_to_room_temp) + (frame - frames_to_room_temp) * 87) / 3600)
 time_text.set_text(f'Time: {calc_time} s')

 # Annotate some points
 ann_heat1.set_text(f'Temp: {loaded_u_arrays[frame][40, 10]:.0f}')
 ann_heat2.set_text(f'Temp: {loaded_u_arrays[frame][85, 140]:.0f}')
 ann_diff1.set_text(f'HD: {loaded_h_arrays[frame][40, 10]:.0f}')
 ann_diff2.set_text(f'HD: {loaded_h_arrays[frame][85, 140]:.0f}')

 return im1, im2 # Return the updated artists


# Create the animation without displaying it
ani = FuncAnimation(fig, update, frames=frames_to_do, repeat=False, blit=True, interval=1,
 fargs=(loaded_u_arrays, loaded_h_arrays)) # frames=len(loaded_u_arrays)

# Create the progress bar with tqdm
with tqdm(total=frames_to_do, desc='Creating Animation') as pbar: # total=len(loaded_u_arrays)
 for i in range(frames_to_do): # for i in range(len(loaded_u_arrays)):
 update(i, loaded_u_arrays, loaded_h_arrays) # Manually update the frame with both datasets
 pbar.update(1) # Update the progress bar

# Save the animation as a video file (e.g., MP4)
print("Converting to .mp4 now. This may take some time. This is normal, wait for Python to finish this process.")
ani.save('diffusion_animation.mp4', writer='ffmpeg', dpi=96, fps=60)

# Close the figure to prevent it from being displayed
plt.close(fig)