
Recherche avancée
Médias (91)
-
Spoon - Revenge !
15 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
My Morning Jacket - One Big Holiday
15 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
Zap Mama - Wadidyusay ?
15 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
David Byrne - My Fair Lady
15 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
Beastie Boys - Now Get Busy
15 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
Granite de l’Aber Ildut
9 septembre 2011, par
Mis à jour : Septembre 2011
Langue : français
Type : Texte
Autres articles (60)
-
List of compatible distributions
26 avril 2011, parThe table below is the list of Linux distributions compatible with the automated installation script of MediaSPIP. Distribution nameVersion nameVersion number Debian Squeeze 6.x.x Debian Weezy 7.x.x Debian Jessie 8.x.x Ubuntu The Precise Pangolin 12.04 LTS Ubuntu The Trusty Tahr 14.04
If you want to help us improve this list, you can provide us access to a machine whose distribution is not mentioned above or send the necessary fixes to add (...) -
HTML5 audio and video support
13 avril 2011, parMediaSPIP uses HTML5 video and audio tags to play multimedia files, taking advantage of the latest W3C innovations supported by modern browsers.
The MediaSPIP player used has been created specifically for MediaSPIP and can be easily adapted to fit in with a specific theme.
For older browsers the Flowplayer flash fallback is used.
MediaSPIP allows for media playback on major mobile platforms with the above (...) -
Support audio et vidéo HTML5
10 avril 2011MediaSPIP utilise les balises HTML5 video et audio pour la lecture de documents multimedia en profitant des dernières innovations du W3C supportées par les navigateurs modernes.
Pour les navigateurs plus anciens, le lecteur flash Flowplayer est utilisé.
Le lecteur HTML5 utilisé a été spécifiquement créé pour MediaSPIP : il est complètement modifiable graphiquement pour correspondre à un thème choisi.
Ces technologies permettent de distribuer vidéo et son à la fois sur des ordinateurs conventionnels (...)
Sur d’autres sites (9056)
-
Method For Crawling Google
28 mai 2011, par Multimedia Mike — Big DataI wanted to crawl Google in order to harvest a large corpus of certain types of data as yielded by a certain search term (we’ll call it “term” for this exercise). Google doesn’t appear to offer any API to automatically harvest their search results (why would they ?). So I sat down and thought about how to do it. This is the solution I came up with.
FAQ
Q : Is this legal / ethical / compliant with Google’s terms of service ?
A : Does it look like I care ? Moving right along…Manual Crawling Process
For this exercise, I essentially automated the task that would be performed by a human. It goes something like this :- Search for “term”
- On the first page of results, download each of the 10 results returned
- Click on the next page of results
- Go to step 2, until Google doesn’t return anymore pages of search results
Google returns up to 1000 results for a given search term. Fetching them 10 at a time is less than efficient. Fortunately, the search URL can easily be tweaked to return up to 100 results per page.
Expanding Reach
Problem : 1000 results for the “term” search isn’t that many. I need a way to expand the search. I’m not aiming for relevancy ; I’m just searching for random examples of some data that occurs around the internet.My solution for this is to refine the search using the “site” wildcard. For example, you can ask Google to search for “term” at all Canadian domains using “site :.ca”. So, the manual process now involves harvesting up to 1000 results for every single internet top level domain (TLD). But many TLDs can be more granular than that. For example, there are 50 sub-domains under .us, one for each state (e.g., .ca.us, .ny.us). Those all need to be searched independently. Same for all the sub-domains under TLDs which don’t allow domains under the main TLD, such as .uk (search under .co.uk, .ac.uk, etc.).
Another extension is to combine “term” searches with other terms that are likely to have a rich correlation with “term”. For example, if “term” is relevant to various scientific fields, search for “term” in conjunction with various scientific disciplines.
Algorithmically
My solution is to create an SQLite database that contains a table of search seeds. Each seed is essentially a “site :” string combined with a starting index.Each TLD and sub-TLD is inserted as a searchseed record with a starting index of 0.
A script performs the following crawling algorithm :
- Fetch the next record from the searchseed table which has not been crawled
- Fetch search result page from Google
- Scrape URLs from page and insert each into URL table
- Mark the searchseed record as having been crawled
- If the results page indicates there are more results for this search, insert a new searchseed for the same seed but with a starting index 100 higher
Digging Into Sites
Sometimes, Google notes that certain sites are particularly rich sources of “term” and offers to let you search that site for “term”. This basically links to another search for ‘term site:somesite”. That site gets its own search seed and the program might harvest up to 1000 URLs from that site alone.Harvesting the Data
Armed with a database of URLs, employ the following algorithm :- Fetch a random URL from the database which has yet to be downloaded
- Try to download it
- For goodness sake, have a mechanism in place to detect whether the download process has stalled and automatically kill it after a certain period of time
- Store the data and update the database, noting where the information was stored and that it is already downloaded
This step is easy to parallelize by simply executing multiple copies of the script. It is useful to update the URL table to indicate that one process is already trying to download a URL so multiple processes don’t duplicate work.
Acting Human
A few factors here :- Google allegedly doesn’t like automated programs crawling its search results. Thus, at the very least, don’t let your script advertise itself as an automated program. At a basic level, this means forging the User-Agent : HTTP header. By default, Python’s urllib2 will identify itself as a programming language. Change this to a well-known browser string.
- Be patient ; don’t fire off these search requests as quickly as possible. My crawling algorithm inserts a random delay of a few seconds in between each request. This can still yield hundreds of useful URLs per minute.
- On harvesting the data : Even though you can parallelize this and download data as quickly as your connection can handle, it’s a good idea to randomize the URLs. If you hypothetically had 4 download processes running at once and they got to a point in the URL table which had many URLs from a single site, the server might be configured to reject too many simultaneous requests from a single client.
Conclusion
Anyway, that’s just the way I would (and did) do it. What did I do with all the data ? That’s a subject for a different post. -
Anomalie #2866 : SPIP sous estime les visites de 30 à 50% par rapport à Google Analytics
16 mai 2013, par cedric -C’est normal d’avoir des fichiers dans tmp/visites/
Ce sont toutes les visites en cours (aka les internautes qui ont vu une page depuis moins de 30min) puisque l’on attend qu’une visite soit finie pour la dépouiller. Cela n’a donc rien à voir avec un écart de mesure.Pour comprendre cet écart de mesure, il faudrait analyser finement les logs apache, peut être instrumenter le code, croiser avec google analytics etc. Quel est le site concerné ?
-
Evolution #3560 : Supprimer l’option expérimentale Google Closure Compiler
3 mai 2017, par cedric -oui !