Recherche avancée

Médias (0)

Mot : - Tags -/utilisateurs

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (69)

  • Amélioration de la version de base

    13 septembre 2013

    Jolie sélection multiple
    Le plugin Chosen permet d’améliorer l’ergonomie des champs de sélection multiple. Voir les deux images suivantes pour comparer.
    Il suffit pour cela d’activer le plugin Chosen (Configuration générale du site > Gestion des plugins), puis de configurer le plugin (Les squelettes > Chosen) en activant l’utilisation de Chosen dans le site public et en spécifiant les éléments de formulaires à améliorer, par exemple select[multiple] pour les listes à sélection multiple (...)

  • Publier sur MédiaSpip

    13 juin 2013

    Puis-je poster des contenus à partir d’une tablette Ipad ?
    Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir

  • Participer à sa traduction

    10 avril 2011

    Vous pouvez nous aider à améliorer les locutions utilisées dans le logiciel ou à traduire celui-ci dans n’importe qu’elle nouvelle langue permettant sa diffusion à de nouvelles communautés linguistiques.
    Pour ce faire, on utilise l’interface de traduction de SPIP où l’ensemble des modules de langue de MediaSPIP sont à disposition. ll vous suffit de vous inscrire sur la liste de discussion des traducteurs pour demander plus d’informations.
    Actuellement MediaSPIP n’est disponible qu’en français et (...)

Sur d’autres sites (8056)

  • WTV:move the common variable used by wtvdec.c and wtvenc.c to a new file wtv.h and...

    1er mai 2011, par zhentan feng

    WTV:move the common variable used by wtvdec.c and wtvenc.c to a new file wtv.h and...

  • Multivariate Testing vs A/B Testing (Quick-Start Guide)

    7 mars 2024, par Erin

    Traditional advertising (think Mad Men) was all about slogans, taglines and coming up with a one-liner that was meant to change the world.

    But that type of advertising was extremely challenging to test, so it was hard to know if it worked. Most of the time, nobody knew if they were being effective with their advertising.

    Enter modern marketing : the world of data-driven advertising.

    Thanks to the internet and web analytics tools like Matomo, you can quickly test almost anything and improve your site.

    The question is, should you do multivariate testing or A/B testing ?

    While both have their advantages, each has a specific use case.

    In this guide, we’ll break down the differences between multivariate and A/B testing, offer some pros and cons of each and show you some examples so you can decide which one is best for you.

    What is A/B testing ?

    A/B testing, or split testing, is testing an individual element in a medium against another version of the same element to see which produces better results.

    What is a/b testing?

    A/B tests are conducted by creating two different versions of a digital landmark : a website, landing page, email, or advertisement.

    The goal ? Figure out which version performs better.

    Let’s say, for example, you want to drive more sales on your core product page.

    You test two call-to-action buttons : “Buy Now” and “Add to Cart.”

    After running the test for two weeks, you see that “Buy Now” produced 1.2% conversions while “Add to Cart” produced 7.6%.

    In this scenario, you’ve found your winner : version B, “Add to Cart.”

    By conducting A/B tests regularly, you can optimise your site, increase engagement and convert more visitors into customers.

    Keep in mind that A/B testing isn’t perfect ; it doesn’t always produce a win.

    According to Noah Kagan, founder of AppSumo, only 1 out of 8 A/B tests his company conducts produces significant change.

    Advantages of A/B testing

    A/B testing is great when you need to get an accurate result fast on a specific element of your marketing efforts.

    Whether it’s a landing page or product page, you can get quick results without needing a lot of traffic.

    A/B testing is one of the most widely accepted and used testing methods for marketers and business owners.

    When you limit the number of tracked variables used in a test, you can quickly deliver reliable data, allowing you to iterate and pivot quickly if necessary.

    This is a great way to test your marketing methods, especially if you’re a newer business or you don’t have substantial traffic yet.

    Splitting up your traffic into a few segments (like with multivariate testing) will be very challenging to gain accurate results if you have lower daily traffic.

    One final advantage of A/B testing is that it’s a relatively easy way to introduce testing and optimising to a team, decision-maker, or stakeholder since it’s easy to implement. You can quickly demonstrate the value with a simple change and tangible evidence.

    Disadvantages of A/B testing

    So, what are the downsides to A/B testing ?

    Although A/B testing can get you quick results on small changes, it has limitations.

    A/B testing is all about measuring one element against another.

    This means you’re immediately limited in how many elements you can test. If you have to test out different variables, then A/B testing isn’t your best option since you’ll have to run test after test to get your result.

    If you need specific information on how different combinations of elements interact with one another on a web page, then multivariate is your best option.

    What is multivariate testing ?

    If you want to take your testing to the next level, you’ll want to try multivariate testing.

    Multivariate testing relies on the same foundational mechanism of A/B testing, but instead of matching up two elements against one another, it compares a higher number of variables at once.

    Multiple + variations = multivariate.

    Multivariate testing looks at how combinations of elements and variables interact.

    Like A/B testing, traffic to a page is split between different web page versions. Multivariate testing aims to measure each version’s effectiveness against the other versions.

    Ultimately, it’s about finding the winning combination.

    What Is Multivariate Testing?

    When to use multivariate testing

    The quick answer on when to use multivariate testing is if you have enough traffic.

    Just how much traffic, though ?

    While there’s no set number, you should aim to have 10,000 visitors per month or more, to ensure that each variant receives enough traffic to produce meaningful results within a reasonable time frame.

    Once you meet the traffic requirement, let’s talk about use cases.

    Let’s say you want to introduce a new email signup.

    But you want to create it from scratch and aren’t sure what will make your audience take action.

    So, you create a page with a signup form, a header, and an image.

    To run a multivariate test, you create two lengths of signup forms, four headlines, and two images.

    Next, you would create a test to split traffic between these sixteen combinations.

    Advantages of multivariate testing

    If you have enough traffic, multivariate testing can be an incredible way to speed up your A/B testing by testing dozens of combinations of your web page.

    This is handy when creating a new landing page and you want to determine if specific parts of your design are winners — which you can then use in future campaigns.

    Disadvantages of multivariate testing

    The main disadvantage of multivariate testing is that you need a lot of traffic to get started.

    If you try to do a multivariate analysis but you’re not getting much traffic, your results won’t be accurate (and it will take a long time to see accurate data).

    Additionally, multivariate tests are more complicated. They’re best suited for advanced marketers since more moving parts are at play.

    Key differences between multivariate and A/B testing

    Now that we’ve covered what A/B and multivariate tests are, let’s look at some key differences to help clarify which is best for you.

    Key differences between multivariate testing and A/B testing.

    1. Variation of combinations

    The major difference between A/B and multivariate testing is the number of combinations involved.

    With A/B testing, you only look at one element (no combinations). You simply take one part of your page (i.e., your headline copy) and make two versions.

    With multivariate testing, you’re looking at combinations of different elements (i.e., headline copy, form length, images).

    2. Number of pages to test

    The next difference lies in how many pages you will test.

    With an A/B test, you are splitting traffic on your website to two different pages : A and B.

    However, with multivariate testing, you will likely have 4-16 different test pages.

    This is because dozens of combinations can be created when you start testing a handful of elements at once.

    For example, if you want to test two headlines, two form buttons and two images on a signup form, then you have several combinations :

    • Headline A, Button A, Image A
    • Headline A, Button A, Image B
    • Headline A, Button B, Image A
    • Headline A, Button B, Image B
    • Headline B, Button A, Image A
    • Headline B, Button A, Image B
    • Headline B, Button B, Image A
    • Headline B, Button B, Image B

    In this scenario, you must create eight pages to send traffic to.

    3. Traffic requirements

    The next major difference between the two testing types is the traffic requirements.

    With A/B testing, you don’t need much traffic at all.

    Since you’re only testing two pages, you can split your traffic in half between the two types.

    However, if you plan on implementing a multivariate test, you will likely be splitting your traffic at least four or more ways.

    This means you need to have significantly more traffic coming in to get accurate data from your test. If you try to do this when your traffic is too low, you won’t have a large enough sample size.

    4. Time requirements

    Next up, just like traffic, there’s also a time requirement.

    A/B testing only tests two versions of a page against each other (while testing a single element). This means you’ll get accurate results faster than a multivariate test — usually within days.

    However, for a multivariate test, you might need to wait weeks. This is because you’re splitting your traffic by 4, 8, 12, or more web page variations. This could take months since you need a large enough sample size for accuracy.

    5. Big vs. small changes

    Another difference between A/B testing and multivariate testing is the magnitude of changes.

    With an A/B test, you’re looking at one element of a page, which means changing that element to the winning version isn’t a major overhaul of your design.

    But, with multivariate testing, you may find that the winning combination is drastically different than your control page, which could lead to a significant design change.

    6. Accuracy of results

    A/B tests are easier to decipher than multivariate testing since you only look at two versions of a single element on a page.

    You have a clear winner if one headline yields a 5% conversion rate and another yields a 1.2% conversion rate.

    But multivariate testing looks at so many combinations of a page that it can be a bit trickier to decipher what’s moving the needle.

    Pros and cons : Multivariate vs. A/B testing

    Before picking your testing method of choice, let’s look at some quick pros and cons.

    Pros and cons of multivariate vs. a/b testing.

    A/B testing pros and cons

    Here are the pros and cons of A/B testing :

    Pros

    • Get results quickly
    • Results are easier to interpret
    • Lower traffic requirement
    • Easy to get started

    Cons

    • You need to be hyper-focused on the right testing element
    • Requires performing test after test to optimise a web page

    Multivariate testing pros and cons

    Here are the pros and cons of multivariate testing :

    Pros

    • Handy when redesigning an entire web page
    • You can test multiple variables at once
    • Significant results (since traffic is higher)
    • Gather multiple data insights at once

    Cons

    • Requires substantial traffic
    • Harder to accurately decipher results
    • Not as easy to get started (more advanced)

    Use Matomo to start testing and improving your site

    A/B testing in Matomo analytics

    You need to optimise your website if you want to get more leads, land more conversions and grow your business.

    A/B testing and multivariate testing are proven testing methods you can lean on to improve your website and create a better user experience.

    You may prefer one testing method now over the other, and that’s okay.

    The main thing is you’re starting to test. The best marketers and analysts in the world find what works through testing and double down on their winning tactics.

    If you want to start improving your website with testing today, get started with Matomo for free.

    With Matomo, you can conduct A/B tests and multivariate tests easily, accurately, and ethically. Unlike other web analytics tools, Matomo prioritises privacy, providing
    100% accurate data without sampling, and eliminates the need for cookie consent
    banners (except in the UK and Germany).

    Try Matomo free for 21-days. No credit card required.

  • What is a Cohort Report ? A Beginner’s Guide to Cohort Analysis

    3 janvier 2024, par Erin

    Handling your user data as a single mass of numbers is rarely conducive to figuring out meaningful patterns you can use to improve your marketing campaigns.

    A cohort report (or cohort analysis) can help you quickly break down that larger audience into sequential segments and contrast and compare based on various metrics. As such, it is a great tool for unlocking more granular trends and insights — for example, identifying patterns in engagement and conversions based on the date users first interacted with your site.

    In this guide, we explain the basics of the cohort report and the best way to set one up to get the most out of it.

    What is a cohort report ?

    In a cohort report, you divide a data set into groups based on certain criteria — typically a time-based cohort metric like first purchase date — and then analyse the data across those segments, looking for patterns.

    Date-based cohort analysis is the most common approach, often creating cohorts based on the day a user completed a particular action — signed up, purchased something or visited your website. Depending on the metric you choose to measure (like return visits), the cohort report might look something like this :

    Example of a basic cohort report

    Note that this is not a universal benchmark or anything of the sort. The above is a theoretical cohort analysis based on app users who downloaded the app, tracking and comparing the retention rates as the days go by. 

    The benchmarks will be drastically different depending on the metric you’re measuring and the basis for your cohorts. For example, if you’re measuring returning visitor rates among first-time visitors to your website, expect single-digit percentages even on the second day.

    Your industry will also greatly affect what you consider positive in a cohort report. For example, if you’re a subscription SaaS, you’d expect high continued usage rates over the first week. If you sell office supplies to companies, much less so.

    What is an example of a cohort ?

    As we just mentioned, a typical cohort analysis separates users or customers by the date they first interacted with your business — in this case, they downloaded your app. Within that larger analysis, the users who downloaded it on May 3 represent a single cohort.

    Illustration of a specific cohort

    In this case, we’ve chosen behaviour and time — the app download day — to separate the user base into cohorts. That means every specific day denotes a specific cohort within the analysis.

    Diving deeper into an individual cohort may be a good idea for important holidays or promotional events like Black Friday.

    Of course, cohorts don’t have to be based on specific behaviour within certain periods. You can also create cohorts based on other dimensions :

    • Transactional data — revenue per user
    • Churn data — date of churn
    • Behavioural cohort — based on actions taken on your website, app or e-commerce store, like the number of sessions per user or specific product pages visited
    • Acquisition cohort — which channel referred the user or customer

    For more information on different cohort types, read our in-depth guide on cohort analysis.

    How to create a cohort report (and make sense of it)

    Matomo makes it easy to view and analyse different cohorts (without the privacy and legal implications of using Google Analytics).

    Here are a few different ways to set up a cohort report in Matomo, starting with our built-in cohorts report.

    Cohort reports

    With Matomo, cohort reports are automatically compiled based on the first visit date. The default metric is the percentage of returning visitors.

    Screenshot of the cohorts report in Matomo analytics

    Changing the settings allows you to create multiple variations of cohort analysis reports.

    Break down cohorts by different metrics

    The percentage of returning visits can be valuable if you’re trying to improve early engagement in a SaaS app onboarding process. But it’s far from your only option.

    You can also compare performance by conversion, revenue, bounce rate, actions per visit, average session duration or other metrics.

    Cohort metric options in Matomo analytics

    Change the time and scope of your cohort analysis

    Splitting up cohorts by single days may be useless if you don’t have a high volume of users or visitors. If the average cohort size is only a few users, you won’t be able to identify reliable patterns. 

    Matomo lets you set any time period to create your cohort analysis report. Instead of the most recent days, you can create cohorts by week, month, year or custom date ranges. 

    Date settings in the cohorts report in Matomo analytics

    Cohort sizes will depend on your customer base. Make sure each cohort is large enough to encapsulate all the customers in that cohort and not so small that you have insignificant cohorts of only a few customers. Choose a date range that gives you that without scaling it too far so you can’t identify any seasonal trends.

    Cohort analysis can be a great tool if you’ve recently changed your marketing, product offering or onboarding. Set the data range to weekly and look for any impact in conversions and revenue after the changes.

    Using the “compare to” feature, you can also do month-over-month, quarter-over-quarter or any custom date range comparisons. This approach can help you get a rough overview of your campaign’s long-term progress without doing any in-depth analysis.

    You can also use the same approach to compare different holiday seasons against each other.

    If you want to combine time cohorts with segmentation, you can run cohort reports for different subsets of visitors instead of all visitors. This can lead to actionable insights like adjusting weekend or specific seasonal promotions to improve conversion rates.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    Easily create custom cohort reports beyond the time dimension

    If you want to split your audience into cohorts by focusing on something other than time, you will need to create a custom report and choose another dimension. In Matomo, you can choose from a wide range of cohort metrics, including referrers, e-commerce signals like viewed product or product category, form submissions and more.

    Custom report options in Matomo

    Then, you can create a simple table-based report with all the insights you need by choosing the metrics you want to see. For example, you could choose average visit duration, bounce rate and other usage metrics.

    Metrics selected in a Matomo custom report

    If you want more revenue-focused insights, add metrics like conversions, add-to-cart and other e-commerce events.

    Custom reports make it easy to create cohort reports for almost any dimension. You can use any metric within demographic and behavioural analytics to create a cohort. (You can explore the complete list of our possible segmentation metrics.)

    We cover different types of custom reports (and ideas for specific marketing campaigns) in our guide on custom segmentation.

    Create your first cohort report and gain better insights into your visitors

    Cohort reports can help you identify trends and the impact of short-term marketing efforts like events and promotions.

    With Matomo cohort reports you have the power to create complex custom reports for various cohorts and segments. 

    If you’re looking for a powerful, easy-to-use web analytics solution that gives you 100% accurate data without compromising your users’ privacy, Matomo is a great fit. Get started with a 21-day free trial today. No credit card required.