Recherche avancée

Médias (91)

Autres articles (56)

  • Use, discuss, criticize

    13 avril 2011, par

    Talk to people directly involved in MediaSPIP’s development, or to people around you who could use MediaSPIP to share, enhance or develop their creative projects.
    The bigger the community, the more MediaSPIP’s potential will be explored and the faster the software will evolve.
    A discussion list is available for all exchanges between users.

  • Des sites réalisés avec MediaSPIP

    2 mai 2011, par

    Cette page présente quelques-uns des sites fonctionnant sous MediaSPIP.
    Vous pouvez bien entendu ajouter le votre grâce au formulaire en bas de page.

  • MediaSPIP Player : problèmes potentiels

    22 février 2011, par

    Le lecteur ne fonctionne pas sur Internet Explorer
    Sur Internet Explorer (8 et 7 au moins), le plugin utilise le lecteur Flash flowplayer pour lire vidéos et son. Si le lecteur ne semble pas fonctionner, cela peut venir de la configuration du mod_deflate d’Apache.
    Si dans la configuration de ce module Apache vous avez une ligne qui ressemble à la suivante, essayez de la supprimer ou de la commenter pour voir si le lecteur fonctionne correctement : /** * GeSHi (C) 2004 - 2007 Nigel McNie, (...)

Sur d’autres sites (9825)

  • What Is Incrementality & Why Is It Important in Marketing ?

    26 mars 2024, par Erin

    Imagine this : you just launched your latest campaign and it was a major success.

    You blew last month’s results out of the water.

    You combined a variety of tactics, channels and ad creatives to make it work.

    Now, it’s time to build the next campaign.

    The only issue ?

    You don’t know what made it successful or how much your recent efforts impacted the results.

    You’ve been building your brand for years. You’ve built up a variety of marketing pillars that are working for you. So, how do you know how much of your campaign is from years of effort or a new tactic you just implemented ?

    The key is incrementality.

    This is a way to properly attribute the right weight to your marketing tactics.

    In this article, we break down what incrementality is in marketing, how it differs from traditional attribution and how you can calculate and track it to grow your business.

    What is incrementality in marketing ?

    Incrementality in marketing is growth that can be directly credited to a marketing effort above and beyond the success of the branding.

    It looks at how much a specific tactic positively impacted a campaign on top of overall branding and marketing strategies.

    What is incrementally in marketing?

    For example, this could be how much a specific tactic, campaign or channel helped increase conversions, email sign-ups or organic traffic.

    The primary purpose of incrementally in marketing is to more accurately determine the impact a single marketing variable had on the success of a project.

    It removes every other factor and isolates the specific method to help marketers double down on that strategy or move on to new tactics.

    With Matomo, you can track conversions simply. With our last non-direct channel attribution system, you’ll be able to quickly see what channels are converting (and which aren’t) so you can gain insights into incrementality. 

    See why over 1 million websites choose Matomo today.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    How incrementality differs from attribution

    In marketing and advertising, it’s crucial to understand what tactics and activities drive growth.

    Incrementality and attribution help marketers and business owners understand what efforts impact their results.

    But they’re not the same.

    Here’s how they differ :

    Incrementality vs. attribution

    Incrementality explained

    Incrementality measures how much a specific marketing campaign or activity drives additional sales or growth.

    Simply put, it’s analysing the difference between having never implemented the campaign (or tactic or channel) in the first place versus the impact of the activity.

    In other words, how much revenue would you have generated this month without campaign A ?

    And how much additional revenue did you generate directly due to campaign A ?

    The reality is that dozens of factors impact revenue and growth.

    You aren’t just pouring your marketing into one specific channel or campaign at a time.

    Chances are, you’ve got your hands on several marketing initiatives like SEO, PPC, organic social media, paid search, email marketing and more.

    Beyond that, you’ve built a brand with a not-so-tangible impact on your recurring revenue.

    So, the question is, if you took away your new campaign, would you still be generating the same amount of revenue ?

    And, if you add in that campaign, how much additional revenue and growth did it directly create ?

    That is incrementality. It’s how much a campaign went above and beyond to add new revenue that wouldn’t have been there otherwise.

    So, how does attribution play into all of this ?

    Attribution explained

    Attribution is simply the process of assigning credit for a conversion to a particular marketing touchpoint.

    While incrementality is about narrowing down the overall revenue impact from a particular campaign, attribution seeks to point to a specific channel to attribute a sale.

    For example, in any given marketing campaign, you have a few marketing tactics.

    Let’s say you’re launching a limited-time product.

    You might have :

    • Paid ads via Facebook and Instagram
    • A blog post sharing how the product works
    • Organic social media posts on Instagram and TikTok
    • Email waitlist campaign building excitement around the upcoming product
    • SMS campaigns to share a limited-time discount

    So, when the time comes for the sale launch, and you generate $30,000 in revenue, what channel gets the credit ?

    Do you give credit to the paid ads on Facebook ? What about Instagram ? They got people to follow you and got them on the email waitlist.

    Do you give credit to email for reminding people of the upcoming sale ? What about your social media posts that reminded people there ?

    Or do you credit your SMS campaign that shared a limited-time discount ?

    Which channel is responsible for the sale ?

    This is what attribution is all about.

    It’s about giving credit where credit is due.

    The reason you want to attribute credit ? So you know what’s working and can double down your efforts on the high-impact marketing activities and channels.

    Leveraging incrementality and attribution together

    Incrementality and attribution aren’t competing methods of analysing what’s working.

    They’re complementary to one another and go hand in hand.

    You can (and should) use attribution and incrementality in your marketing to help understand what activities, campaigns and channels are making the biggest incremental impact on your business growth.

    Why it’s important to measure incrementality

    Incrementality is crucial to measure if you want to pour your time, money and effort into the right marketing channels and tactics.

    Here are a few reasons why you need to measure incrementality if you want to be successful with your marketing and grow your business :

    1. Accurate data

    If you want to be an effective marketer, you need to be accurate.

    You can’t blindly start marketing campaigns in hopes that you will sell many products or services.

    That’s not how it works.

    Sure, you’ll probably make some sales here and there. But to truly be effective with your work, you must measure your activities and channels correctly.

    Incrementality helps you see how each channel, tactic or campaign made a difference in your marketing.

    Matomo gives you 100% accurate data on your website activities. Unlike Google Analytics, we don’t use data sampling which limits how much data is analysed.

    Screenshot example of the Matomo dashboard

    2. Helps you to best determine the right tactics for success

    How can you plan your marketing strategy if you don’t know what’s working ?

    Think about it.

    You’ll be blindly sailing the seas without a compass telling you where to go.

    Measuring incrementality in your marketing tactics and channels helps you understand the best tactics.

    It shows you what’s moving the needle (and what’s not).

    Once you can see the most impactful tactics and channels, you can forge future campaigns that you know will work.

    3. Allows you to get the most out of your marketing budget

    Since incrementality sheds light on what’s moving your business forward, you can confidently implement your efforts on the right tactics and channels.

    Guess what happens when you start doubling down on the most impactful activities ?

    You start increasing revenue, decreasing ad spend and getting a higher return on investment.

    The result is that you will get more out of your marketing budget.

    Not only will you boost revenue, but you’ll also be able to boost profit margins since you’re not wasting money on ineffective tactics.

    4. Increase traffic

    When you see what’s truly working in your business, you can figure out what channels and tactics you should be working.

    Incrementality helps you understand not only what your best revenue tactics are but also what channels and campaigns are bringing in the most traffic.

    When you can increase traffic, you can increase your overall marketing impact.

    5. Increase revenue

    Finally, with increased traffic, the inevitable result is more conversions.

    More conversions mean more revenue.

    Incrementality gives you a vision of the tactics and channels that are converting the best.

    If you can see that your SMS campaigns are driving the best ROI, then you know that you’ll grow your revenue by pouring more into acquiring SMS leads.

    By calculating incrementality regularly, you can rest assured that you’re only investing time and money into the most impactful activities in terms of revenue generation.

    How to calculate and test incrementality in marketing

    Now that you understand how incrementality works and why it’s important to calculate, the question is : 

    How do you calculate and conduct incrementality tests ?

    Given the ever-changing marketing landscape, it’s crucial to understand how to calculate and test incrementally in your business.

    If you’re not sure how incrementality testing works, then follow these simple steps :

    How to test and analyze incrementality in marketing?

    Your first step to get an incrementality measurement is to conduct what’s referred to as a “holdout test.”

    It’s not a robust test, but it’s an easy way to get the ball rolling with incrementality.

    Here’s how it works :

    1. Choose your target audience.

    With Matomo’s segmentation feature, you can get pretty specific with your target audience, such as :

      • Visitors from the UK
      • Returning visitors
      • Mobile users
      • Visitors who clicked on a specific ad
    1. Split your audience into two groups :
      • Control group (60% of the segment)
      • Test group (40% of the segment)
    1. Target the control group with your marketing tactic (the simpler the tactic, the better).
    1. Target the test group with a different marketing tactic.
    1. Analyse the results. The difference between the control and test groups is the incremental lift in results. The new marketing tactic is either more effective or not.
    1. Repeat the test with a new control group (with an updated tactic) and a new test group (with a new tactic).

    Matomo can help you analyse the results of your campaigns in our Goals feature. Set up business objectives so you can easily track different goals like conversions.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    Here’s an example of how this incrementality testing could look in real life.

    Imagine a fitness retailer wants to start showing Facebook ads in their marketing mix.

    The marketing manager decided to conduct a holdout test. If we match our example below with the steps above, this is how the holdout test might look.

    1. They choose people who’ve purchased free weights in the past as their target audience (see how that segmentation works ?).
    2. They split this segment into a control group and a test group.
    3. For this test, they direct their regular marketing campaign to the control group (60% of the segment). The campaign includes promoting a 20% off sale on organic social media posts, email marketing, and SMS.
    4. They direct their regular marketing campaign plus Facebook ads to the test group (40% of the segment).
    5. They ran the campaign for three weeks with the goal for sale conversions and noticed :
      • The control group had a 1.5% conversion rate.
      • The test group (with Facebook ads) had a 2.1% conversion rate.
      • In this scenario, they could see the group who saw the Facebook ads convert better.
      • They created the following formula to measure the incremental lift of the Facebook ads :
    Calculation: Incrementality in marketing.
      • Here’s how the calculation works out : (2.1% – 1.5%) / 1.5% = 40%

    The Facebook ads had a positive 40% incremental lift in conversions during the sale.

    Incrementality testing isn’t a one-and-done process, though.

    While this first test is a great sign for the marketing manager, it doesn’t mean they should immediately throw all their money into Facebook ads.

    They should continue conducting tests to verify the initial test.

    Use Matomo to track incrementality today

    Incrementality can give you insights into exactly what’s working in your marketing (and what’s not) so you can design proven strategies to grow your business.

    If you want more help tracking your marketing efforts, try Matomo today.

    Our web analytics and behaviour analytics platform gives you firsthand data on your website visitors you can use to craft effective marketing strategies.

    Matomo provides 100% accurate data. Unlike other major web analytics platforms, we don’t do data sampling. What you see is what’s really going on in your website. That way, you can make more informed decisions for better results.

    At Matomo, we take privacy very seriously and include several advanced privacy protections to ensure you are in full control.

    As a fully compliant web analytics solution, we’re fully compliant with some of the world’s strictest privacy regulations like GDPR. With Matomo, you get peace of mind knowing you can make data-driven decisions while also being compliant. 

    If you’re ready to launch a data-driven marketing strategy today and grow your business, get started with our 21-day free trial now. No credit card required.

  • ffmpeg produces duplicate pts with "wallclock_as_timestamps 1" option on MKV

    15 avril 2024, par Jax2171

    I need to get real time reference of every keyframe captured by an IP camera. The -wallclock_as_timestamps 1 option seems to do the trick for us, however we are forced to replace the TS output container with MKV to get a correct PTS epoch value 1712996356.833000.

    


    Here is the ffmpeg command used :

    


    ffmpeg -report -use_wallclock_as_timestamps 1 -rtsp_transport tcp -i rtsp://user:password1@192.168.5.21/cam/realmonitor?channel=1channel1[1]=1subtype=0 -c:v copy -c:a aac -copyts -f matroska -y rec.mkv


    


    The capture process runs without any relevant worning or error messages.

    


    However, playing the captured video with any player shows very short and evident but very annoying lags. Upon investigation I discovered that many frame PTSs have the same value. The command I used to show duplicate PTSs is as follows :

    


    ffprobe -v error -show_entries frame=pkt_pts_time -select_streams v -of csv=p=0 rec.mkv | sort | uniq -d


    


    On a recording of about 10 minutes the result of the duplicate PTS is the following :

    


    1713086493.367000
1713086493.368000
1713086493.370000
1713086493.372000
1713086543.714000
1713086558.793000
1713086558.817000
1713086558.872000
1713086561.780000
1713086564.642000
1713086564.657000
1713086564.778000
1713086565.794000
...


    


    I'm not sure if the lag problem is caused by this, however the problem does not occur with the TS container, which however I cannot use due to the PTS values being roundly 33 bit.

    


    The -vsync 0 or -vsync 2 options on input or output didn't help.

    


    This is the log using the -report option :

    


        ffmpeg started on 2024-04-15 at 09:04:38
Report written to "ffmpeg-20240415-090438.log"
Log level: 48
Command line:
ffmpeg -report -stats -hide_banner -use_wallclock_as_timestamps 1 -rtsp_transport tcp -i "rtsp://user:password1@192.168.5.21/cam/realmonitor?channel=1channel1[1]=1subtype=0" -c:v copy -c:a aac -copyts -f matroska -y rec.mkv
Splitting the commandline.
Reading option '-report' ... matched as option 'report' (generate a report) with argument '1'.
Reading option '-stats' ... matched as option 'stats' (print progress report during encoding) with argument '1'.
Reading option '-hide_banner' ... matched as option 'hide_banner' (do not show program banner) with argument '1'.
Reading option '-use_wallclock_as_timestamps' ... matched as AVOption 'use_wallclock_as_timestamps' with argument '1'.
Reading option '-rtsp_transport' ... matched as AVOption 'rtsp_transport' with argument 'tcp'.
Reading option '-i' ... matched as input url with argument 'rtsp://user:password1@192.168.5.21/cam/realmonitor?channel=1channel1[1]=1subtype=0'.
Reading option '-c:v' ... matched as option 'c' (codec name) with argument 'copy'.
Reading option '-c:a' ... matched as option 'c' (codec name) with argument 'aac'.
Reading option '-copyts' ... matched as option 'copyts' (copy timestamps) with argument '1'.
Reading option '-f' ... matched as option 'f' (force format) with argument 'matroska'.
Reading option '-y' ... matched as option 'y' (overwrite output files) with argument '1'.
Reading option 'rec.mkv' ... matched as output url.
Finished splitting the commandline.
Parsing a group of options: global .
Applying option report (generate a report) with argument 1.
Applying option stats (print progress report during encoding) with argument 1.
Applying option hide_banner (do not show program banner) with argument 1.
Applying option copyts (copy timestamps) with argument 1.
Applying option y (overwrite output files) with argument 1.
Successfully parsed a group of options.
Parsing a group of options: input url rtsp://user:password1@192.168.5.21/cam/realmonitor?channel=1channel1[1]=1subtype=0.
Successfully parsed a group of options.
Opening an input file: rtsp://user:password1@192.168.5.21/cam/realmonitor?channel=1channel1[1]=1subtype=0.
[tcp @ 0x1646660] No default whitelist set
[tcp @ 0x1646660] Original list of addresses:
[tcp @ 0x1646660] Address 192.168.5.21 port 554
[tcp @ 0x1646660] Interleaved list of addresses:
[tcp @ 0x1646660] Address 192.168.5.21 port 554
[tcp @ 0x1646660] Starting connection attempt to 192.168.5.21 port 554
[tcp @ 0x1646660] Successfully connected to 192.168.5.21 port 554
[rtsp @ 0x1645e70] SDP:
v=0
o=- 2251950012 2251950012 IN IP4 0.0.0.0
s=Media Server
c=IN IP4 0.0.0.0
t=0 0
a=control:*
a=packetization-supported:DH
a=rtppayload-supported:DH
a=range:npt=now-
a=x-packetization-supported:IV
a=x-rtppayload-supported:IV
m=video 0 RTP/AVP 96
a=control:trackID=0
a=framerate:25.000000
a=rtpmap:96 H264/90000
a=fmtp:96 packetization-mode=1;profile-level-id=4D4028;sprop-parameter-sets=Z01AKKaAeAIn5ZuAgICgAAADACAAAAZQgAA=,aO48gAA=
a=recvonly
m=audio 0 RTP/AVP 97
a=control:trackID=1
a=rtpmap:97 MPEG4-GENERIC/16000
a=fmtp:97 streamtype=5;profile-level-id=1;mode=AAC-hbr;sizelength=13;indexlength=3;indexdeltalength=3;config=1408
a=recvonly

[rtsp @ 0x1645e70] video codec set to: h264
[rtsp @ 0x1645e70] RTP Packetization Mode: 1
[rtsp @ 0x1645e70] RTP Profile IDC: 4d Profile IOP: 40 Level: 28
[rtsp @ 0x1645e70] Extradata set to 0x164af98 (size: 39)
[rtsp @ 0x1645e70] audio codec set to: aac
[rtsp @ 0x1645e70] audio samplerate set to: 16000
[rtsp @ 0x1645e70] audio channels set to: 1
[rtsp @ 0x1645e70] setting jitter buffer size to 0
[rtsp @ 0x1645e70] setting jitter buffer size to 0
[rtsp @ 0x1645e70] hello state=0
Failed to parse interval end specification ''
[h264 @ 0x164ab30] nal_unit_type: 7(SPS), nal_ref_idc: 3
[h264 @ 0x164ab30] nal_unit_type: 8(PPS), nal_ref_idc: 3
[h264 @ 0x164ab30] nal_unit_type: 7(SPS), nal_ref_idc: 3
[h264 @ 0x164ab30] nal_unit_type: 8(PPS), nal_ref_idc: 3
[h264 @ 0x164ab30] nal_unit_type: 7(SPS), nal_ref_idc: 3
[h264 @ 0x164ab30] nal_unit_type: 8(PPS), nal_ref_idc: 3
[h264 @ 0x164ab30] nal_unit_type: 5(IDR), nal_ref_idc: 3
[h264 @ 0x164ab30] Format yuvj420p chosen by get_format().
[h264 @ 0x164ab30] Reinit context to 1920x1088, pix_fmt: yuvj420p
[h264 @ 0x164ab30] nal_unit_type: 1(Coded slice of a non-IDR picture), nal_ref_idc: 3
[h264 @ 0x164ab30] nal_unit_type: 1(Coded slice of a non-IDR picture), nal_ref_idc: 3
[h264 @ 0x164ab30] nal_unit_type: 1(Coded slice of a non-IDR picture), nal_ref_idc: 3
[h264 @ 0x164ab30] nal_unit_type: 1(Coded slice of a non-IDR picture), nal_ref_idc: 3
[h264 @ 0x164ab30] nal_unit_type: 1(Coded slice of a non-IDR picture), nal_ref_idc: 3
[h264 @ 0x164ab30] nal_unit_type: 1(Coded slice of a non-IDR picture), nal_ref_idc: 3
[rtsp @ 0x1645e70] All info found
Input #0, rtsp, from 'rtsp://user:password1@192.168.5.21/cam/realmonitor?channel=1channel1[1]=1subtype=0':
  Metadata:
    title           : Media Server
  Duration: N/A, start: 1713164678.794625, bitrate: N/A
    Stream #0:0, 22, 1/90000: Video: h264 (Main), yuvj420p(pc, bt709, progressive), 1920x1080, 25 fps, 25 tbr, 90k tbn, 50 tbc
    Stream #0:1, 15, 1/16000: Audio: aac (LC), 16000 Hz, mono, fltp
Successfully opened the file.
Parsing a group of options: output url rec.mkv.
Applying option c:v (codec name) with argument copy.
Applying option c:a (codec name) with argument aac.
Applying option f (force format) with argument matroska.
Successfully parsed a group of options.
Opening an output file: rec.mkv.
[file @ 0x1699f30] Setting default whitelist 'file,crypto,data'
Successfully opened the file.
Stream mapping:
  Stream #0:0 -> #0:0 (copy)
  Stream #0:1 -> #0:1 (aac (native) -> aac (native))
Press [q] to stop, [?] for help
cur_dts is invalid st:0 (0) [init:1 i_done:0 finish:0] (this is harmless if it occurs once at the start per stream)
cur_dts is invalid st:1 (0) [init:0 i_done:0 finish:0] (this is harmless if it occurs once at the start per stream)
detected 4 logical cores
[graph_0_in_0_1 @ 0x1682bb0] Setting 'time_base' to value '1/16000'
[graph_0_in_0_1 @ 0x1682bb0] Setting 'sample_rate' to value '16000'
[graph_0_in_0_1 @ 0x1682bb0] Setting 'sample_fmt' to value 'fltp'
[graph_0_in_0_1 @ 0x1682bb0] Setting 'channel_layout' to value '0x4'
[graph_0_in_0_1 @ 0x1682bb0] tb:1/16000 samplefmt:fltp samplerate:16000 chlayout:0x4
[format_out_0_1 @ 0x187f2e0] Setting 'sample_fmts' to value 'fltp'
[format_out_0_1 @ 0x187f2e0] Setting 'sample_rates' to value '96000|88200|64000|48000|44100|32000|24000|22050|16000|12000|11025|8000|7350'
[AVFilterGraph @ 0x164fd70] query_formats: 4 queried, 9 merged, 0 already done, 0 delayed
[matroska @ 0x169c330] get_metadata_duration returned: 0
Output #0, matroska, to 'rec.mkv':
  Metadata:
    title           : Media Server
    encoder         : Lavf58.45.100
    Stream #0:0, 0, 1/1000: Video: h264 (Main) (H264 / 0x34363248), yuvj420p(pc, bt709, progressive), 1920x1080, q=2-31, 25 fps, 25 tbr, 1k tbn, 90k tbc
    Stream #0:1, 0, 1/1000: Audio: aac (LC) ([255][0][0][0] / 0x00FF), 16000 Hz, mono, fltp, 69 kb/s
    Metadata:
      encoder         : Lavc58.91.100 aac
cur_dts is invalid st:0 (0) [init:1 i_done:0 finish:0] (this is harmless if it occurs once at the start per stream)
cur_dts is invalid st:1 (0) [init:1 i_done:0 finish:0] (this is harmless if it occurs once at the start per stream)
cur_dts is invalid st:0 (0) [init:1 i_done:0 finish:0] (this is harmless if it occurs once at the start per stream)
[matroska @ 0x169c330] Starting new cluster with timestamp 1713164678731 at offset 770 bytes
[matroska @ 0x169c330] Writing block of size 581 with pts 1713164678731, dts 1713164678731, duration 64 at relative offset 14 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 517 with pts 1713164678795, dts 1713164678795, duration 64 at relative offset 602 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 376900 with pts 1713164678872, dts 1713164678872, duration 40 at relative offset 1126 in cluster at offset 770. TrackNumber 1, keyframe 1
[matroska @ 0x169c330] Writing block of size 8172 with pts 1713164678912, dts 1713164678912, duration 40 at relative offset 378034 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 672 with pts 1713164678912, dts 1713164678912, duration 64 at relative offset 386213 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 550 with pts 1713164679177, dts 1713164679177, duration 64 at relative offset 386892 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 7654 with pts 1713164679178, dts 1713164679178, duration 40 at relative offset 387449 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 7483 with pts 1713164679213, dts 1713164679213, duration 40 at relative offset 395110 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 7703 with pts 1713164679242, dts 1713164679242, duration 40 at relative offset 402600 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 565 with pts 1713164679242, dts 1713164679242, duration 64 at relative offset 410310 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 7650 with pts 1713164679271, dts 1713164679271, duration 40 at relative offset 410882 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 585 with pts 1713164679271, dts 1713164679271, duration 64 at relative offset 418539 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 8682 with pts 1713164679301, dts 1713164679301, duration 40 at relative offset 419131 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 8888 with pts 1713164679330, dts 1713164679330, duration 40 at relative offset 427820 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 506 with pts 1713164679330, dts 1713164679330, duration 64 at relative offset 436715 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 8019 with pts 1713164679360, dts 1713164679360, duration 40 at relative offset 437228 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 7919 with pts 1713164679361, dts 1713164679361, duration 40 at relative offset 445254 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 7822 with pts 1713164679361, dts 1713164679361, duration 40 at relative offset 453180 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 699 with pts 1713164679361, dts 1713164679361, duration 64 at relative offset 461009 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 619 with pts 1713164679361, dts 1713164679361, duration 64 at relative offset 461715 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 7768 with pts 1713164679362, dts 1713164679362, duration 40 at relative offset 462341 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 8469 with pts 1713164679362, dts 1713164679362, duration 40 at relative offset 470116 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 601 with pts 1713164679362, dts 1713164679362, duration 64 at relative offset 478592 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 559 with pts 1713164679363, dts 1713164679363, duration 64 at relative offset 479200 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 8265 with pts 1713164679366, dts 1713164679366, duration 40 at relative offset 479766 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 7766 with pts 1713164679406, dts 1713164679406, duration 40 at relative offset 488038 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 531 with pts 1713164679415, dts 1713164679415, duration 64 at relative offset 495811 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 7753 with pts 1713164679446, dts 1713164679446, duration 40 at relative offset 496349 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 8274 with pts 1713164679486, dts 1713164679486, duration 40 at relative offset 504109 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 569 with pts 1713164679496, dts 1713164679496, duration 64 at relative offset 512390 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 8445 with pts 1713164679526, dts 1713164679526, duration 40 at relative offset 512966 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 522 with pts 1713164679535, dts 1713164679535, duration 64 at relative offset 521418 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 7922 with pts 1713164679566, dts 1713164679566, duration 40 at relative offset 521947 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 7954 with pts 1713164679606, dts 1713164679606, duration 40 at relative offset 529876 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 503 with pts 1713164679615, dts 1713164679615, duration 64 at relative offset 537837 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 11167 with pts 1713164679646, dts 1713164679646, duration 40 at relative offset 538347 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 503 with pts 1713164679655, dts 1713164679655, duration 64 at relative offset 549521 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 10534 with pts 1713164679686, dts 1713164679686, duration 40 at relative offset 550031 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 7607 with pts 1713164679726, dts 1713164679726, duration 40 at relative offset 560572 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 478 with pts 1713164679772, dts 1713164679772, duration 64 at relative offset 568186 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 7842 with pts 1713164679774, dts 1713164679774, duration 40 at relative offset 568671 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 9862 with pts 1713164679806, dts 1713164679806, duration 40 at relative offset 576520 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Starting new cluster with timestamp 1713164679815 at offset 587166 bytes
[matroska @ 0x169c330] Writing block of size 449 with pts 1713164679815, dts 1713164679815, duration 64 at relative offset 14 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 379456 with pts 1713164679870, dts 1713164679870, duration 40 at relative offset 470 in cluster at offset 587166. TrackNumber 1, keyframe 1
[matroska @ 0x169c330] Writing block of size 415 with pts 1713164679903, dts 1713164679903, duration 64 at relative offset 379934 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 7008 with pts 1713164679905, dts 1713164679905, duration 40 at relative offset 380356 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 6917 with pts 1713164679925, dts 1713164679925, duration 40 at relative offset 387371 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 513 with pts 1713164679935, dts 1713164679935, duration 64 at relative offset 394295 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 7111 with pts 1713164679966, dts 1713164679966, duration 40 at relative offset 394815 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 753 with pts 1713164679975, dts 1713164679975, duration 64 at relative offset 401933 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 7091 with pts 1713164680006, dts 1713164680006, duration 40 at relative offset 402693 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 7045 with pts 1713164680045, dts 1713164680045, duration 40 at relative offset 409791 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 659 with pts 1713164680055, dts 1713164680055, duration 64 at relative offset 416843 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 6983 with pts 1713164680086, dts 1713164680086, duration 40 at relative offset 417509 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 6932 with pts 1713164680127, dts 1713164680127, duration 40 at relative offset 424499 in cluster at offset 587166. TrackNumber 1, keyframe 0
frame=   35 fps=0.0 q=-1.0 size=     512kB time=475879:04:40.20 bitrate=   0.0kbits/s speed=3.35e+09x    
[matroska @ 0x169c330] Writing block of size 691 with pts 1713164680135, dts 1713164680135, duration 64 at relative offset 431438 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 6990 with pts 1713164680166, dts 1713164680166, duration 40 at relative offset 432136 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 651 with pts 1713164680176, dts 1713164680176, duration 64 at relative offset 439133 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 7046 with pts 1713164680206, dts 1713164680206, duration 40 at relative offset 439791 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 7130 with pts 1713164680246, dts 1713164680246, duration 40 at relative offset 446844 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 601 with pts 1713164680255, dts 1713164680255, duration 64 at relative offset 453981 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 7205 with pts 1713164680286, dts 1713164680286, duration 40 at relative offset 454589 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 561 with pts 1713164680295, dts 1713164680295, duration 64 at relative offset 461801 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 6936 with pts 1713164680326, dts 1713164680326, duration 40 at relative offset 462369 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 6822 with pts 1713164680366, dts 1713164680366, duration 40 at relative offset 469312 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 621 with pts 1713164680375, dts 1713164680375, duration 64 at relative offset 476141 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 6845 with pts 1713164680405, dts 1713164680405, duration 40 at relative offset 476769 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 6848 with pts 1713164680445, dts 1713164680445, duration 40 at relative offset 483621 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 588 with pts 1713164680455, dts 1713164680455, duration 64 at relative offset 490476 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 6828 with pts 1713164680486, dts 1713164680486, duration 40 at relative offset 491071 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 546 with pts 1713164680495, dts 1713164680495, duration 64 at relative offset 497906 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 6845 with pts 1713164680526, dts 1713164680526, duration 40 at relative offset 498459 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 6924 with pts 1713164680566, dts 1713164680566, duration 40 at relative offset 505311 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 508 with pts 1713164680576, dts 1713164680576, duration 64 at relative offset 512242 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 6844 with pts 1713164680606, dts 1713164680606, duration 40 at relative offset 512757 in cluster at offset 587166. TrackNumber 1, keyframe 0
frame=   48 fps= 47 q=-1.0 size=     512kB time=475879:04:40.72 bitrate=   0.0kbits/s speed=1.66e+09x    
[matroska @ 0x169c330] Writing block of size 587 with pts 1713164680615, dts 1713164680615, duration 64 at relative offset 519608 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 6859 with pts 1713164680645, dts 1713164680645, duration 40 at relative offset 520202 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 6855 with pts 1713164680686, dts 1713164680686, duration 40 at relative offset 527068 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 573 with pts 1713164680695, dts 1713164680695, duration 64 at relative offset 533930 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 6881 with pts 1713164680726, dts 1713164680726, duration 40 at relative offset 534510 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 10773 with pts 1713164680766, dts 1713164680766, duration 40 at relative offset 541398 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 520 with pts 1713164680775, dts 1713164680775, duration 64 at relative offset 552178 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 6923 with pts 1713164680805, dts 1713164680805, duration 40 at relative offset 552705 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Starting new cluster with timestamp 1713164680815 at offset 1146808 bytes
[matroska @ 0x169c330] Writing block of size 580 with pts 1713164680815, dts 1713164680815, duration 64 at relative offset 14 in cluster at offset 1146808. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 380085 with pts 1713164680864, dts 1713164680864, duration 40 at relative offset 601 in cluster at offset 1146808. TrackNumber 1, keyframe 1
[matroska @ 0x169c330] Writing block of size 9916 with pts 1713164680896, dts 1713164680896, duration 40 at relative offset 380694 in cluster at offset 1146808. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 541 with pts 1713164680901, dts 1713164680901, duration 64 at relative offset 390617 in cluster at offset 1146808. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 5877 with pts 1713164680925, dts 1713164680925, duration 40 at relative offset 391165 in cluster at offset 1146808. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 529 with pts 1713164680935, dts 1713164680935, duration 64 at relative offset 397049 in cluster at offset 1146808. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 6661 with pts 1713164680966, dts 1713164680966, duration 40 at relative offset 397585 in cluster at offset 1146808. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] end duration = 1713164681006
[matroska @ 0x169c330] stream 0 end duration = 1713164681006
[matroska @ 0x169c330] stream 1 end duration = 1713164680999
frame=   54 fps= 42 q=-1.0 Lsize=    1515kB time=475879:04:40.99 bitrate=   0.0kbits/s speed=1.33e+09x    
video:1493kB audio:20kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 0.099897%
Input file #0 (rtsp://user:password1@192.168.5.21/cam/realmonitor?channel=1channel1[1]=1subtype=0):
  Input stream #0:0 (video): 54 packets read (1529156 bytes); 
  Input stream #0:1 (audio): 35 packets read (9268 bytes); 35 frames decoded (35840 samples); 
  Total: 89 packets (1538424 bytes) demuxed
Output file #0 (rec.mkv):
  Output stream #0:0 (video): 54 packets muxed (1529156 bytes); 
  Output stream #0:1 (audio): 35 frames encoded (35840 samples); 36 packets muxed (20446 bytes); 
  Total: 90 packets (1549602 bytes) muxed
35 frames successfully decoded, 0 decoding errors
[AVIOContext @ 0x1667620] Statistics: 2 seeks, 7 writeouts
[aac @ 0x1673880] Qavg: 142.738
Exiting normally, received signal 15.


    


    In this short 3 second capture the duplicate timestamps are 1713164679.361000 and 1713164679.362000.

    


    How can I solve this problem ? What different approach could I use to achieve this goal ?

    


    Thanks in advance.

    


  • Revision 32594 : plugins en minuscules, et alias pour les noms de sites

    1er novembre 2009, par fil@… — Log

    plugins en minuscules, et alias pour les noms de sites