Recherche avancée

Médias (0)

Mot : - Tags -/metadatas

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (19)

  • Les formats acceptés

    28 janvier 2010, par

    Les commandes suivantes permettent d’avoir des informations sur les formats et codecs gérés par l’installation local de ffmpeg :
    ffmpeg -codecs ffmpeg -formats
    Les format videos acceptés en entrée
    Cette liste est non exhaustive, elle met en exergue les principaux formats utilisés : h264 : H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 m4v : raw MPEG-4 video format flv : Flash Video (FLV) / Sorenson Spark / Sorenson H.263 Theora wmv :
    Les formats vidéos de sortie possibles
    Dans un premier temps on (...)

  • Ajouter notes et légendes aux images

    7 février 2011, par

    Pour pouvoir ajouter notes et légendes aux images, la première étape est d’installer le plugin "Légendes".
    Une fois le plugin activé, vous pouvez le configurer dans l’espace de configuration afin de modifier les droits de création / modification et de suppression des notes. Par défaut seuls les administrateurs du site peuvent ajouter des notes aux images.
    Modification lors de l’ajout d’un média
    Lors de l’ajout d’un média de type "image" un nouveau bouton apparait au dessus de la prévisualisation (...)

  • Contribute to a better visual interface

    13 avril 2011

    MediaSPIP is based on a system of themes and templates. Templates define the placement of information on the page, and can be adapted to a wide range of uses. Themes define the overall graphic appearance of the site.
    Anyone can submit a new graphic theme or template and make it available to the MediaSPIP community.

Sur d’autres sites (7172)

  • Bump minor versions again on master to keep 4.2 versions separate from master

    21 juillet 2019, par Michael Niedermayer
    Bump minor versions again on master to keep 4.2 versions separate from master
    

    Signed-off-by : Michael Niedermayer <michael@niedermayer.cc>

    • [DH] libavcodec/version.h
    • [DH] libavdevice/version.h
    • [DH] libavfilter/version.h
    • [DH] libavformat/version.h
    • [DH] libavutil/version.h
    • [DH] libpostproc/version.h
    • [DH] libswresample/version.h
    • [DH] libswscale/version.h
  • avconv is killing me with an error I don't understand

    31 août 2013, par mikecole79

    I'm trying to script some testing of Wowza Media Server. Basically, I'm attempting to just beat the living bejeepers out of the thing. I have 5 slightly older computers, originally XP boxes, which I have installed Mint 15 on. I have a script that basically calls the file (or a symbolic link to the file) and takes it into avconv, then dumps it into null.

    The idea here is that with 5 of these computers all starting a new thread every second, up to the max they can handle without freezing, we'll get a decent idea of what our current implementation can handle. The script I have works great, but only on some machines. The systems are all the same hardware, and I installed the same software on them in the beginning, although some of them may have had additional packages installed for various tasks since then. The command I issue in script is :

    timeout 30m avconv -y -re -i http://ourDomainName:1935/path/to/file/mp4:FileName.mp4/playlist.m3u8 -strict experimental -f mp4 /dev/null &amp;

    It works fine on 2 machines, fails on three. I don't know why. The only thing I can think of is that there is a codec that's on those working two and not on the other 3, but I have not yet had any luck tracking that down (still trying even while asking for help).

    Does anyone know some magic here that would allow it to find the needed codec, or install a bunch of codecs, or something ? I have libavcodec-extra-53 installed.

    Thanks !

  • Basic Video Palette Conversion

    20 août 2011, par Multimedia Mike — General, Python

    How do you take a 24-bit RGB image and convert it to an 8-bit paletted image for the purpose of compression using a codec that requires 8-bit input images ? Seems simple enough and that’s what I’m tackling in this post.

    Ask FFmpeg/Libav To Do It
    Ideally, FFmpeg / Libav should be able to handle this automatically. Indeed, FFmpeg used to be able to, at least at the time I wrote this post about ZMBV and was unhappy with FFmpeg’s default results. Somewhere along the line, FFmpeg and Libav lost the ability to do this. I suspect it got removed during some swscale refactoring.

    Still, there’s no telling if the old system would have computed palettes correctly for QuickTime files.

    Distance Approach
    When I started writing my SMC video encoder, I needed to convert RGB (from PNG files) to PAL8 colorspace. The path of least resistance was to match the pixels in the input image to the default 256-color palette that QuickTime assumes (and is hardcoded into FFmpeg/Libav).

    How to perform the matching ? Find the palette entry that is closest to a given input pixel, where "closest" is the minimum distance as computed by the usual distance formula (square root of the sum of the squares of the diffs of all the components).



    That means for each pixel in an image, check the pixel against 256 palette entries (early termination is possible if an acceptable threshold is met). As you might imagine, this can be a bit time-consuming. I wondered about a faster approach...

    Lookup Table
    I think this is the approach that FFmpeg used to use, but I went and derived it for myself after studying the default QuickTime palette table. There’s a pattern there— all of the RGB entries are comprised of combinations of 6 values — 0x00, 0x33, 0x66, 0x99, 0xCC, and 0xFF. If you mix and match these for red, green, and blue values, you come up with 6 * 6 * 6 = 216 different colors. This happens to be identical to the web-safe color palette.

    The first (0th) entry in the table is (FF, FF, FF), followed by (FF, FF, CC), (FF, FF, 99), and on down to (FF, FF, 00) when the green component gets knocked down and step and the next color is (FF, CC, FF). The first 36 palette entries in the table all have a red component of 0xFF. Thus, if an input RGB pixel has a red color closest to 0xFF, it must map to one of those first 36 entries.

    I created a table which maps indices 0..215 to values from 5..0. Each of the R, G, and B components of an input pixel are used to index into this table and derive 3 indices ri, gi, and bi. Finally, the index into the palette table is given by :

      index = ri * 36 + gi * 6 + bi
    

    For example, the pixel (0xFE, 0xFE, 0x01) would yield ri, gi, and bi values of 0, 0, and 5. Therefore :

      index = 0 * 36 + 0 * 6 + 5
    

    The palette index is 5, which maps to color (0xFF, 0xFF, 0x00).

    Validation
    So I was pretty pleased with myself for coming up with that. Now, ideally, swapping out one algorithm for another in my SMC encoder should yield identical results. That wasn’t the case, initially.

    One problem is that the regulation QuickTime palette actually has 40 more entries above and beyond the typical 216-entry color cube (rounding out the grand total of 256 colors). Thus, using the distance approach with the full default table provides for a little more accuracy.

    However, there still seems to be a problem. Let’s check our old standby, the Big Buck Bunny logo image :



    Distance approach using the full 256-color QuickTime default palette


    Distance approach using the 216-color palette


    Table lookup approach using the 216-color palette

    I can’t quite account for that big red splotch there. That’s the most notable difference between images 1 and 2 and the only visible difference between images 2 and 3.

    To prove to myself that the distance approach is equivalent to the table approach, I wrote a Python script to iterate through all possible RGB combinations and verify the equivalence. If you’re not up on your base 2 math, that’s 224 or 16,777,216 colors to run through. I used Python’s multiprocessing module to great effect and really maximized a Core i7 CPU with 8 hardware threads.

    So I’m confident that the palette conversion techniques are sound. The red spot is probably attributable to a bug in my WIP SMC encoder.

    Source Code
    Update August 23, 2011 : Here’s the Python code I used for proving equivalence between the 2 approaches. In terms of leveraging multiple CPUs, it’s possibly the best program I have written to date.

    PYTHON :
    1. # !/usr/bin/python
    2.  
    3. from multiprocessing import Pool
    4.  
    5. palette = []
    6. pal8_table = []
    7.  
    8. def process_r(r) :
    9.  counts = []
    10.  
    11.  for i in xrange(216) :
    12.   counts.append(0)
    13.  
    14.  print "r = %d" % (r)
    15.  for g in xrange(256) :
    16.   for b in xrange(256) :
    17.    min_dsqrd = 0xFFFFFFFF
    18.    best_index = 0
    19.    for i in xrange(len(palette)) :
    20.     dr = palette[i][0] - r
    21.     dg = palette[i][1] - g
    22.     db = palette[i][2] - b
    23.     dsqrd = dr * dr + dg * dg + db * db
    24.     if dsqrd <min_dsqrd :
    25.      min_dsqrd = dsqrd
    26.      best_index = i
    27.    counts[best_index] += 1
    28.  
    29.    # check if the distance approach deviates from the table-based approach
    30.    i = best_index
    31.    r = palette[i][0]
    32.    g = palette[i][1]
    33.    b = palette[i][2]
    34.    ri = pal8_table[r]
    35.    gi = pal8_table[g]
    36.    bi = pal8_table[b]
    37.    table_index = ri * 36 + gi * 6 + bi ;
    38.    if table_index != best_index :
    39.     print "(0x%02X 0x%02X 0x%02X) : distance index = %d, table index = %d" % (r, g, b, best_index, table_index)
    40.  
    41.  return counts
    42.  
    43. if __name__ == ’__main__’ :
    44.  counts = []
    45.  for i in xrange(216) :
    46.   counts.append(0)
    47.  
    48.  # initialize reference palette
    49.  color_steps = [ 0xFF, 0xCC, 0x99, 0x66, 0x33, 0x00 ]
    50.  for r in color_steps :
    51.   for g in color_steps :
    52.    for b in color_steps :
    53.     palette.append([r, g, b])
    54.  
    55.  # initialize palette conversion table
    56.  for i in range(0, 26) :
    57.   pal8_table.append(5)
    58.  for i in range(26, 77) :
    59.   pal8_table.append(4)
    60.  for i in range(77, 128) :
    61.   pal8_table.append(3)
    62.  for i in range(128, 179) :
    63.   pal8_table.append(2)
    64.  for i in range(179, 230) :
    65.   pal8_table.append(1)
    66.  for i in range(230, 256) :
    67.   pal8_table.append(0)
    68.  
    69.  # create a pool of worker threads and break up the overall job
    70.  pool = Pool()
    71.  it = pool.imap_unordered(process_r, range(256))
    72.  try :
    73.   while 1 :
    74.    partial_counts = it.next()
    75.    for i in xrange(216) :
    76.     counts[i] += partial_counts[i]
    77.  except StopIteration :
    78.   pass
    79.  
    80.  print "index, count, red, green, blue"
    81.  for i in xrange(len(counts)) :
    82.   print "%d, %d, %d, %d, %d" % (i, counts[i], palette[i][0], palette[i][1], palette[i][2])