
Recherche avancée
Médias (1)
-
Publier une image simplement
13 avril 2011, par ,
Mis à jour : Février 2012
Langue : français
Type : Video
Autres articles (58)
-
Ecrire une actualité
21 juin 2013, parPrésentez les changements dans votre MédiaSPIP ou les actualités de vos projets sur votre MédiaSPIP grâce à la rubrique actualités.
Dans le thème par défaut spipeo de MédiaSPIP, les actualités sont affichées en bas de la page principale sous les éditoriaux.
Vous pouvez personnaliser le formulaire de création d’une actualité.
Formulaire de création d’une actualité Dans le cas d’un document de type actualité, les champs proposés par défaut sont : Date de publication ( personnaliser la date de publication ) (...) -
Les autorisations surchargées par les plugins
27 avril 2010, parMediaspip core
autoriser_auteur_modifier() afin que les visiteurs soient capables de modifier leurs informations sur la page d’auteurs -
Les formats acceptés
28 janvier 2010, parLes commandes suivantes permettent d’avoir des informations sur les formats et codecs gérés par l’installation local de ffmpeg :
ffmpeg -codecs ffmpeg -formats
Les format videos acceptés en entrée
Cette liste est non exhaustive, elle met en exergue les principaux formats utilisés : h264 : H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 m4v : raw MPEG-4 video format flv : Flash Video (FLV) / Sorenson Spark / Sorenson H.263 Theora wmv :
Les formats vidéos de sortie possibles
Dans un premier temps on (...)
Sur d’autres sites (10185)
-
How do I use gpg to verify an ffmpeg source snapshot download ? [closed]
2 novembre 2024, par NeddieI downloaded two files :


ffmpeg-snapshot.tar.bz2
ffmpeg-devel.asc



The
.asc
file looks like this :

-----BEGIN PGP PUBLIC KEY BLOCK-----


mQENBE22rV0BCAC3DzRmA2XlhrqYv9HKoEvNHHf+PzosmCTHmYhWHDqvBxPkSvCl
...
+x8ETJgPoNK3kQoDagApj4qAt83Ayac3HzNIuEJ7LdvfINIOprujnJ9vH4n04XLg
I4EZ
=Rjbw
-----END PGP PUBLIC KEY BLOCK-----


The command


gpg --show-keys ffmpeg-devel.asc



gives


pub rsa2048 2011-04-26 [SC]
 FCF986EA15E6E293A5644F10B4322F04D67658D8
uid FFmpeg release signing key <ffmpeg-devel@ffmpeg.org>
sub rsa2048 2011-04-26 [E]



The command


gpg --verify ffmpeg-devel.asc ffmpeg-snapshot.tar.bz2



gives output


gpg: verify signatures failed: Unexpected error



I tried decompressing the bz2 file and then


gpg --verify ffmpeg-devel.asc ffmpeg-snapshot.tar



and got the same error.


What am I missing ?


-
How do I combine PyTube audio and video streams in a Flask app and let the user download as one file without storing on the web server ?
10 avril 2022, par AJB9384I'm building a YouTube downloader as a side project in Flask. It allows users to input a url and download the video without storing anything on the server I'm hosting on


Lower quality videos can be sent to the user easily as they from PyTube as one file. I use the code below :


import os
import flask
from flask import redirect, url_for, session, send_file
import requests

import pytube
from pytube import YouTube
from io import BytesIO

@app.route('/pull_videos', methods = ['GET', 'POST'])
def pull_videos(): 
 buffer=BytesIO()
 yt_test=YouTube('https://www.youtube.com/watch?v=NNNPgIfK2YE')
 video = yt_test.streams.get_by_itag(251)

 video.stream_to_buffer(buffer)
 buffer.seek(0)

 return send_file(buffer, as_attachment=True, download_name="Test video")



However, I struggle when trying to pull in higher quality videos as they come in as separate audio and videos streams (see documentation here : https://pytube.io/en/latest/user/streams.html#)


I am trying to use ffmpeg to combine the two and then send to the user, but the code below isn't working as expected and throws an error :


Code :


import os
import flask
from flask import redirect, url_for, session, send_file
import requests
import ffmpeg

import pytube
from pytube import YouTube
from io import BytesIO

@app.route('/pull_videos', methods = ['GET', 'POST'])
def pull_videos(): 
 buffer=BytesIO()
 
 video = yt_test.streams.get_by_itag(137)
 input_video = ffmpeg.input(video)
 
 audio = yt_test.streams.get_by_itag(137)
 input_audio = ffmpeg.input(audio)
 
 combined = ffmpeg.concat(input_video, input_audio, v=1, a=1)
 combined.stream_to_buffer(buffer)
 buffer.seek(0)

 return send_file(buffer, as_attachment=True, download_name="Test video")



Error : AttributeError : 'FilterableStream' object has no attribute 'stream_to_buffer'


How could I combine these audio and video streams from PyTube into one file for the user to download without storing on the server ?


-
Parallelize Youtube video frame download using yt-dlp and cv2
4 mars 2023, par zulle99My task is to download multiple sequences of successive low resolution frames of Youtube videos.


I summarize the main parts of the process :


- 

- Each bag of shots have a dimension of half a second (depending on the current fps)
- In order to grab useful frames I've decided to remove the initial and final 10% of each video since it is common to have an intro and outro. Moreover
- I've made an array of pair of initial and final frame to distribute the load on multiple processes using
ProcessPoolExecutor(max_workers=multiprocessing.cpu_count())
- In case of failure/exception I completly remove the relative directory










The point is that it do not scale up, since while running I noticesd that all CPUs had always a load lower that the 20% more or less. In addition since with these shots I have to run multiple CNNs, to prevent overfitting it is suggested to have a big dataset and not a bounch of shots.


Here it is the code :


import yt_dlp
import os
from tqdm import tqdm
import cv2
import shutil
import time
import random
from concurrent.futures import ProcessPoolExecutor
import multiprocessing
import pandas as pd
import numpy as np
from pathlib import Path
import zipfile


# PARAMETERS
percentage_train_test = 50
percentage_bag_shots = 20
percentage_to_ignore = 10

zip_f_name = f'VideoClassificationDataset_{percentage_train_test}_{percentage_bag_shots}_{percentage_to_ignore}'
dataset_path = Path('/content/VideoClassificationDataset')

# DOWNOAD ZIP FILES
!wget --no-verbose https://github.com/gtoderici/sports-1m-dataset/archive/refs/heads/master.zip

# EXTRACT AND DELETE THEM
!unzip -qq -o '/content/master.zip' 
!rm '/content/master.zip'

DATA = {'train_partition.txt': {},
 'test_partition.txt': {}}

LABELS = []

train_dict = {}
test_dict = {}

path = '/content/sports-1m-dataset-master/original'

for f in os.listdir(path):
 with open(path + '/' + f) as f_txt:
 lines = f_txt.readlines()
 for line in lines:
 splitted_line = line.split(' ')
 label_indices = splitted_line[1].rstrip('\n').split(',') 
 DATA[f][splitted_line[0]] = list(map(int, label_indices))

with open('/content/sports-1m-dataset-master/labels.txt') as f_labels:
 LABELS = f_labels.read().splitlines()


TRAIN = DATA['train_partition.txt']
TEST = DATA['test_partition.txt']
print('Original Train Test length: ', len(TRAIN), len(TEST))

# sample a subset percentage_train_test
TRAIN = dict(random.sample(TRAIN.items(), (len(TRAIN)*percentage_train_test)//100))
TEST = dict(random.sample(TEST.items(), (len(TEST)*percentage_train_test)//100))

print(f'Sampled {percentage_train_test} Percentage Train Test length: ', len(TRAIN), len(TEST))


if not os.path.exists(dataset_path): os.makedirs(dataset_path)
if not os.path.exists(f'{dataset_path}/train'): os.makedirs(f'{dataset_path}/train')
if not os.path.exists(f'{dataset_path}/test'): os.makedirs(f'{dataset_path}/test')



Function to extract a sequence of continuous frames :


def extract_frames(directory, url, idx_bag, start_frame, end_frame):
 capture = cv2.VideoCapture(url)
 count = start_frame

 capture.set(cv2.CAP_PROP_POS_FRAMES, count)
 os.makedirs(f'{directory}/bag_of_shots{str(idx_bag)}')

 while count < end_frame:

 ret, frame = capture.read()

 if not ret: 
 shutil.rmtree(f'{directory}/bag_of_shots{str(idx_bag)}')
 return False

 filename = f'{directory}/bag_of_shots{str(idx_bag)}/shot{str(count - start_frame)}.png'

 cv2.imwrite(filename, frame)
 count += 1

 capture.release()
 return True



Function to spread the load along multiple processors :


def video_to_frames(video_url, labels_list, directory, dic, percentage_of_bags):
 url_id = video_url.split('=')[1]
 path_until_url_id = f'{dataset_path}/{directory}/{url_id}'
 try: 

 ydl_opts = {
 'ignoreerrors': True,
 'quiet': True,
 'nowarnings': True,
 'simulate': True,
 'ignorenoformatserror': True,
 'verbose':False,
 'cookies': '/content/all_cookies.txt',
 #https://stackoverflow.com/questions/63329412/how-can-i-solve-this-youtube-dl-429
 }
 ydl = yt_dlp.YoutubeDL(ydl_opts)
 info_dict = ydl.extract_info(video_url, download=False)

 if(info_dict is not None and info_dict['fps'] >= 20):
 # I must have a least 20 frames per seconds since I take half of second bag of shots for every video

 formats = info_dict.get('formats', None)

 # excluding the initial and final 10% of each video to avoid noise
 video_length = info_dict['duration'] * info_dict['fps']

 shots = info_dict['fps'] // 2

 to_ignore = (video_length * percentage_to_ignore) // 100
 new_len = video_length - (to_ignore * 2)
 tot_stored_bags = ((new_len // shots) * percentage_of_bags) // 100 # ((total_possbile_bags // shots) * percentage_of_bags) // 100
 if tot_stored_bags == 0: tot_stored_bags = 1 # minimum 1 bag of shots

 skip_rate_between_bags = (new_len - (tot_stored_bags * shots)) // (tot_stored_bags-1) if tot_stored_bags > 1 else 0

 chunks = [[to_ignore+(bag*(skip_rate_between_bags+shots)), to_ignore+(bag*(skip_rate_between_bags+shots))+shots] for bag in range(tot_stored_bags)]
 # sequence of [[start_frame, end_frame], [start_frame, end_frame], [start_frame, end_frame], ...]


 # ----------- For the moment I download only shots form video that has 144p resolution -----------

 res = {
 '160': '144p',
 '133': '240p',
 '134': '360p',
 '135': '360p',
 '136': '720p'
 }

 format_id = {}
 for f in formats: format_id[f['format_id']] = f
 #for res in resolution_id:
 if list(res.keys())[0] in list(format_id.keys()):
 video = format_id[list(res.keys())[0]]
 url = video.get('url', None)
 if(video.get('url', None) != video.get('manifest_url', None)):

 if not os.path.exists(path_until_url_id): os.makedirs(path_until_url_id)

 with ProcessPoolExecutor(max_workers=multiprocessing.cpu_count()) as executor:
 for idx_bag, f in enumerate(chunks): 
 res = executor.submit(
 extract_frames, directory = path_until_url_id, url = url, idx_bag = idx_bag, start_frame = f[0], end_frame = f[1])
 
 if res.result() is True: 
 l = np.zeros(len(LABELS), dtype=int) 
 for label in labels_list: l[label] = 1
 l = np.append(l, [shots]) # appending the number of shots taken in the list before adding it on the dictionary

 dic[f'{directory}/{url_id}/bag_of_shots{str(idx_bag)}'] = l.tolist()


 except Exception as e:
 shutil.rmtree(path_until_url_id)
 pass



Download of TRAIN bag of shots :


start_time = time.time()
pbar = tqdm(enumerate(TRAIN.items()), total = len(TRAIN.items()), leave=False)

for _, (url, labels_list) in pbar: video_to_frames(
 video_url = url, labels_list = labels_list, directory = 'train', dic = train_dict, percentage_of_bags = percentage_bag_shots)

print("--- %s seconds ---" % (time.time() - start_time))



Download of TEST bag of shots :


start_time = time.time()
pbar = tqdm(enumerate(TEST.items()), total = len(TEST.items()), leave=False)

for _, (url, labels_list) in pbar: video_to_frames(
 video_url = url, labels_list = labels_list, directory = 'test', dic = test_dict, percentage_of_bags = percentage_bag_shots)

print("--- %s seconds ---" % (time.time() - start_time))



Save the .csv files


train_df = pd.DataFrame.from_dict(train_dict, orient='index', dtype=int).reset_index(level=0)
train_df = train_df.rename(columns={train_df.columns[-1]: 'shots'})
train_df.to_csv('/content/VideoClassificationDataset/train.csv', index=True)

test_df = pd.DataFrame.from_dict(test_dict, orient='index', dtype=int).reset_index(level=0)
test_df = test_df.rename(columns={test_df.columns[-1]: 'shots'})
test_df.to_csv('/content/VideoClassificationDataset/test.csv', index=True)