Recherche avancée

Médias (0)

Mot : - Tags -/xmlrpc

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (52)

  • Les autorisations surchargées par les plugins

    27 avril 2010, par

    Mediaspip core
    autoriser_auteur_modifier() afin que les visiteurs soient capables de modifier leurs informations sur la page d’auteurs

  • Librairies et binaires spécifiques au traitement vidéo et sonore

    31 janvier 2010, par

    Les logiciels et librairies suivantes sont utilisées par SPIPmotion d’une manière ou d’une autre.
    Binaires obligatoires FFMpeg : encodeur principal, permet de transcoder presque tous les types de fichiers vidéo et sonores dans les formats lisibles sur Internet. CF ce tutoriel pour son installation ; Oggz-tools : outils d’inspection de fichiers ogg ; Mediainfo : récupération d’informations depuis la plupart des formats vidéos et sonores ;
    Binaires complémentaires et facultatifs flvtool2 : (...)

  • Contribute to a better visual interface

    13 avril 2011

    MediaSPIP is based on a system of themes and templates. Templates define the placement of information on the page, and can be adapted to a wide range of uses. Themes define the overall graphic appearance of the site.
    Anyone can submit a new graphic theme or template and make it available to the MediaSPIP community.

Sur d’autres sites (9231)

  • Anomalie #2644 : Forum - Nombre de messages erroné

    12 avril 2012, par Ben .

    En passant un autre bug : quand on clique sur TOUS, le TOUS ne passe pas en blanc (SPIP 3.0.0-rc SVN [19239])

  • Evolution #4427 : Permettre (via une constante) de passer de 65 536 à 4096 le nombre max de fichie...

    24 janvier 2020, par b b

    Merci, mais je te demandais un diff ;)

  • even though my code is running without an error, it does not generate plot or video. I have xming runing

    23 octobre 2017, par Amin Abbasi

    This is my first code and I am really new to coding. I am trying to create a video or just plot my code.Eeven though my code is running without an error, I can’t get the video or the plot to generate. I have xming running and I have plotted a sample to make sure it not a computer Issue. I have also tried the following on GitHub but no success :
    https://jakevdp.github.io/blog/2013/05/19/a-javascript-viewer-for-matplotlib-animations/

    # -*- coding: utf-8 -*-
    import numpy as np
    def solver(I, V, f, c, L, dt, cc, T, user_action=None):
       """Solve u_tt=c^2*u_xx + f on (0,L)x(0,T]."""
       Nt = int(round(T/dt))
       t = np.linspace(0, Nt*dt, Nt+1) # Mesh points in time
       dx = dt*c/float(cc)
       Nx = int(round(L/dx))
       x = np.linspace(0, L, Nx+1) # Mesh points in space
       C2 = cc**2 # Help variable in the scheme
       # Make sure dx and dt are compatible with x and t
       dx = x[1] - x[0]
       dt = t[1] - t[0]
       if f is None or f == 0 :
           f = lambda x, t: 0
       if V is None or V == 0:
           V = lambda x: 0
       u       = np.zeros(Nx+1) # Solution array at new time level
       u_n     = np.zeros(Nx+1) # Solution at 1 time level back
       u_nm1   = np.zeros(Nx+1) # Solution at 2 time levels back
       import time; t0 = time.clock() # Measure CPU time
       # Load initial condition into u_n
       for i in range(0,Nx+1):
           u_n[i] = I(x[i])
       if user_action is not None:
           user_action(u_n, x, t, 0)
       # Special formula for first time step
       n = 0
       for i in range(1, Nx):
           u[i] = u_n[i] + dt*V(x[i]) + \
               0.5*C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) + \
               0.5*dt**2*f(x[i], t[n])
       u[0] = 0; u[Nx] = 0
       if user_action is not None:
           user_action(u, x, t, 1)
       # Switch variables before next step
       u_nm1[:] = u_n; u_n[:] = u
       for n in range(1, Nt):
           # Update all inner points at time t[n+1]
           for i in range(1, Nx):
               u[i] = - u_nm1[i] + 2*u_n[i] + \
                       C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) + \
                       dt**2*f(x[i], t[n])
           # Insert boundary conditions
           u[0] = 0; u[Nx] = 0
           if user_action is not None:
               if user_action(u, x, t, n+1):
                   break
           # Switch variables before next step
           u_nm1[:] = u_n; u_n[:] = u
       cpu_time = time.clock() - t0
       return u, x, t,
    def test_quadratic():
       """Check that u(x,t)=x(L-x)(1+t/2) is exactly reproduced."""
       def u_exact(x, t):
           return x*(L-x)*(1 + 0.5*t)
       def I(x):
           return u_exact(x, 0)
       def V(x):
           return 0.5*u_exact(x, 0)
       def f(x, t):
           return 2*(1 + 0.5*t)*c**2
       L = 2.5
       c = 1.5
       cc = 0.75
       Nx = 6 # Very coarse mesh for this exact test
       dt = cc*(L/Nx)/c
       T = 18
       def assert_no_error(u, x, t, n):
           u_e = u_exact(x, t[n])
           diff = np.abs(u - u_e).max()
           tol = 1E-13
           assert diff < tol
       solver(I, V, f, c, L, dt, cc, T,
               user_action=assert_no_error)
    def viz(
       I, V, f, c, L, dt, C, T,umin, umax, animate=True, tool='matplotlib'):
       """Run solver and visualize u at each time level."""
       def plot_u_st(u, x, t, n):
           """user_action function for solver."""
           plt.plot(x, u, 'r-')
    #                 xlabel='x', ylabel='u',
    #                 axis=[0, L, umin, umax],
    #                 title='t=%f' % t[n], show=True)
           # Let the initial condition stay on the screen for 2
           # seconds, else insert a pause of 0.2 s between each plot
           time.sleep(2) if t[n] == 0 else time.sleep(0.2)
           plt.savefig('frame_%04d.png' % n) # for movie making
       class PlotMatplotlib:
           def __call__(self, u, x, t, n):
               """user_action function for solver."""
               if n == 0:
                   plt.ion()
                   self.lines = plt.plot(x, u, 'r-')
                   plt.xlabel('x'); plt.ylabel('u')
                   plt.axis([0, L, umin, umax])
                   plt.legend(['t=%f' % t[n]], loc='lower left')
               else:
                   self.lines[0].set_ydata(u)
                   plt.legend(['t=%f' % t[n]], loc='lower left')
                   plt.draw()
               time.sleep(2) if t[n] == 0 else time.sleep(0.2)
               plt.savefig('tmp_%04d.png' % n) # for movie making
       if tool == 'matplotlib':
           import matplotlib.pyplot as plt
           plot_u = PlotMatplotlib()
       elif tool == 'scitools':
           import scitools.std as plt # scitools.easyviz interface
           plot_u = plot_u_st
       import time, glob, os
       # Clean up old movie frames
       for filename in glob.glob('tmp_*.png'):
           os.remove(filename)
       # Call solver and do the simulaton
       user_action = plot_u if animate else None
       u, x, t, cpu = solver_function(
           I, V, f, c, L, dt, C, T, user_action)
       # Make video files
       fps = 4 # frames per second
       codec2ext = dict(flv='flv', libx264='mp4', libvpx='webm',
                        libtheora='ogg') # video formats
       filespec = 'tmp_%04d.png'
       movie_program = 'ffmpeg' # or 'avconv'
       for codec in codec2ext:
           ext = codec2ext[codec]
           cmd = '%(movie_program)s -r %(fps)d -i %(filespec)s '\
                 '-vcodec %(codec)s movie.%(ext)s' % vars()
           os.system(cmd)
       if tool == 'scitools':
           # Make an HTML play for showing the animation in a browser
           plt.movie('tmp_*.png', encoder='html', fps=fps,
                     output_file='movie.html')
       return cpu