
Recherche avancée
Médias (1)
-
The Great Big Beautiful Tomorrow
28 octobre 2011, par
Mis à jour : Octobre 2011
Langue : English
Type : Texte
Autres articles (73)
-
Le profil des utilisateurs
12 avril 2011, parChaque utilisateur dispose d’une page de profil lui permettant de modifier ses informations personnelle. Dans le menu de haut de page par défaut, un élément de menu est automatiquement créé à l’initialisation de MediaSPIP, visible uniquement si le visiteur est identifié sur le site.
L’utilisateur a accès à la modification de profil depuis sa page auteur, un lien dans la navigation "Modifier votre profil" est (...) -
Configurer la prise en compte des langues
15 novembre 2010, parAccéder à la configuration et ajouter des langues prises en compte
Afin de configurer la prise en compte de nouvelles langues, il est nécessaire de se rendre dans la partie "Administrer" du site.
De là, dans le menu de navigation, vous pouvez accéder à une partie "Gestion des langues" permettant d’activer la prise en compte de nouvelles langues.
Chaque nouvelle langue ajoutée reste désactivable tant qu’aucun objet n’est créé dans cette langue. Dans ce cas, elle devient grisée dans la configuration et (...) -
Récupération d’informations sur le site maître à l’installation d’une instance
26 novembre 2010, parUtilité
Sur le site principal, une instance de mutualisation est définie par plusieurs choses : Les données dans la table spip_mutus ; Son logo ; Son auteur principal (id_admin dans la table spip_mutus correspondant à un id_auteur de la table spip_auteurs)qui sera le seul à pouvoir créer définitivement l’instance de mutualisation ;
Il peut donc être tout à fait judicieux de vouloir récupérer certaines de ces informations afin de compléter l’installation d’une instance pour, par exemple : récupérer le (...)
Sur d’autres sites (7563)
-
ffmpeg save mp3 file from available wss stream
11 juillet 2021, par phoenixAZIn a hello world node.js app I am succeeding in getting a feed from twilio conference and sending to the google speech to text. Concurrently I want to control recording to mp3 of the available audio stream (programmatically call start and stop). The was is subscribed to audio stream but I don't know how to attach ffmpeg to the local stream. I have tried :


// ffmpeg('rtsp://host:port/path/to/stream')
 //experimenting telling it to use the local stream
 //
 //ffmpeg(wss.addListener) //invlaid input error
 //ffmpeg(wss.stream) //thsi hits the console error below
 ffmpeg(wss.stream)
 .noVideo()
 .audioChannels(1)
 .audioBitrate(128)
 .duration('1:00')
 .on('end', function () { console.log('saved mp3'); })
 .on('error', function (err) { console.log('error mp3'); })
 .save('/path/to/output.mp3');



Any suggestions are welcomed. I am in a node.js project


-
Python : ani.save very slow. Any alternatives to create videos ?
14 novembre 2023, par CzesklebaIm doing some simple diffusion calculations. I save 2 matrices to 2 datasets every so many steps (every 2s or so) to a single .h5 file. After that I then load the file in another script, create some figures (2 subplots etc., see/run code - i know could be prettier). Then I use matplotlib.animation to make the animation. In the code below, in the very last lines, I then run the ani.save command from matplotlib.


And that's where the problem is. The animation is created within 2 seconds, even for my longer animations (14.755 frames, done in under 2s at 8284 it/s) but after that, ani.save in line 144 takes forever (it didn't finish over night). It reserves/uses about 10gb of my RAM constantly but seemingly takes forever. If you run the code below be sure to set the frames_to_do (line 20) to something like 30 or 60 to see that it does in fact save an mp4 for shorter videos. You can set it higher to see how fast the time to save stuff increases to something unreasonable.


I've been fiddling this for 2 days now and I cant figure it out. I guess my question is : Is there any way to create the video in a reasonable time like this ? Or do I need something other than animation ?


You should be able to just run the code. Ill provide a diffusion_array.h5 with 140 frames so you dont have to create a dummy file, if I can figure out how to upload something like this safely. (The results are with dummy numbers for now, diffusion coefficients etc. are not right yet.)
I used dropbox. Not sure if thats allowed, if not I'll delete the link and uhh PM me or something ?




Here is the code :


import h5py
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
from matplotlib.animation import FuncAnimation
from tqdm import tqdm
import numpy as np


# saving the .mp4 after tho takes forever

# Create an empty figure and axis
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 9), dpi=96)

# Load all saved arrays into a list
file_name = 'diffusion_array.h5'
loaded_u_arrays = []
loaded_h_arrays = []
frames_to_do = 14755 # for now like this, use # version once the slow mp4 convert is cleared up

# with h5py.File(file_name, 'r') as hf:
# for key in hf.keys():
# if key.startswith('u_snapshot_'):
# loaded_u_arrays.append(hf[key][:])
# elif key.startswith('h_snapshot_'):
# loaded_h_arrays.append(hf[key][:])

with h5py.File(file_name, 'r') as hf:
 for i in range(frames_to_do):
 target_key1 = f'u_snapshot_{i:05d}'
 target_key2 = f'h_snapshot_{i:05d}'
 if target_key1 in hf:
 loaded_u_arrays.append(hf[target_key1][:])
 else:
 print(f'Dataset u for time step {i} not found in the file.')
 if target_key2 in hf:
 loaded_h_arrays.append(hf[target_key2][:])
 else:
 print(f'Dataset h for time step {i} not found in the file.')

# Create "empty" imshow objects
# First one
norm1 = mcolors.Normalize(vmin=140, vmax=400)
cmap1 = plt.get_cmap('hot')
cmap1.set_under('0.85')
im1 = ax1.imshow(loaded_u_arrays[0], cmap=cmap1, norm=norm1)
ax1.set_title('Diffusion Heatmap')
ax1.set_xlabel('X')
ax1.set_ylabel('Y')
cbar_ax = fig.add_axes([0.05, 0.15, 0.03, 0.7])
cbar_ax.set_xlabel('$T$ / K', labelpad=20)
fig.colorbar(im1, cax=cbar_ax)


# Second one
ax2 = plt.subplot(1, 2, 2)
norm2 = mcolors.Normalize(vmin=-0.1, vmax=5)
cmap2 = plt.get_cmap('viridis')
cmap2.set_under('0.85')
im2 = ax2.imshow(loaded_h_arrays[0], cmap=cmap2, norm=norm2)
ax2.set_title('Diffusion Hydrogen')
ax2.set_xlabel('X')
ax2.set_ylabel('Y')
cbar_ax = fig.add_axes([0.9, 0.15, 0.03, 0.7])
cbar_ax.set_xlabel('HD in ml/100g', labelpad=20)
fig.colorbar(im2, cax=cbar_ax)

# General
fig.subplots_adjust(right=0.85)
time_text = ax2.text(-15, 0.80, f'Time: {0} s', transform=plt.gca().transAxes, color='black', fontsize=20)

# Annotations
# Heat 1
marker_style = dict(marker='o', markersize=6, markerfacecolor='black', markeredgecolor='black')
ax1.scatter(*[10, 40], s=marker_style['markersize'], c=marker_style['markerfacecolor'],
 edgecolors=marker_style['markeredgecolor'])
ann_heat1 = ax1.annotate(f'Temp: {loaded_u_arrays[0][40, 10]:.0f}', xy=[10, 40], xycoords='data',
 xytext=([10, 40][0], [10, 40][1] + 48), textcoords='data',
 arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=0.3"), fontsize=12, color='black')
# Heat 2
ax1.scatter(*[140, 85], s=marker_style['markersize'], c=marker_style['markerfacecolor'],
 edgecolors=marker_style['markeredgecolor'])
ann_heat2 = ax1.annotate(f'Temp: {loaded_u_arrays[0][85, 140]:.0f}', xy=[140, 85], xycoords='data',
 xytext=([140, 85][0] + 55, [140, 85][1] + 3), textcoords='data',
 arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=0.3"), fontsize=12, color='black')

# Diffusion 1
marker_style = dict(marker='o', markersize=6, markerfacecolor='black', markeredgecolor='black')
ax2.scatter(*[10, 40], s=marker_style['markersize'], c=marker_style['markerfacecolor'],
 edgecolors=marker_style['markeredgecolor'])
ann_diff1 = ax2.annotate(f'HD: {loaded_h_arrays[0][40, 10]:.0f}', xy=[10, 40], xycoords='data',
 xytext=([10, 40][0], [10, 40][1] + 48), textcoords='data',
 arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=0.3"), fontsize=12, color='black')
# Diffusion 2
ax2.scatter(*[140, 85], s=marker_style['markersize'], c=marker_style['markerfacecolor'],
 edgecolors=marker_style['markeredgecolor'])
ann_diff2 = ax2.annotate(f'HD: {loaded_h_arrays[0][85, 140]:.0f}', xy=[140, 85], xycoords='data',
 xytext=([140, 85][0] + 55, [140, 85][1] + 3), textcoords='data',
 arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=0.3"), fontsize=12, color='black')


# Function to update the animation
def update(frame, *args):
 loaded_u_array, loaded_h_array = args

 s_per_frame = 2 # during weld/cooling you save a state every 2s
 frames_to_room_temp = 7803 # that means this many frames need to be animated
 dt_big = 87 # during "just diffusion" you save every 10 frame but 87s pass in those

 # Update the time step shown
 if frame <= frames_to_room_temp:
 im1.set_data(loaded_u_array[frame])
 im2.set_data(loaded_h_array[frame])
 time_text.set_text(f'Time: {frame * s_per_frame} s')

 else:
 im1.set_data(loaded_u_array[frame])
 im2.set_data(loaded_h_array[frame])
 calc_time = int(((2 * frames_to_room_temp) + (frame - frames_to_room_temp) * 87) / 3600)
 time_text.set_text(f'Time: {calc_time} s')

 # Annotate some points
 ann_heat1.set_text(f'Temp: {loaded_u_arrays[frame][40, 10]:.0f}')
 ann_heat2.set_text(f'Temp: {loaded_u_arrays[frame][85, 140]:.0f}')
 ann_diff1.set_text(f'HD: {loaded_h_arrays[frame][40, 10]:.0f}')
 ann_diff2.set_text(f'HD: {loaded_h_arrays[frame][85, 140]:.0f}')

 return im1, im2 # Return the updated artists


# Create the animation without displaying it
ani = FuncAnimation(fig, update, frames=frames_to_do, repeat=False, blit=True, interval=1,
 fargs=(loaded_u_arrays, loaded_h_arrays)) # frames=len(loaded_u_arrays)

# Create the progress bar with tqdm
with tqdm(total=frames_to_do, desc='Creating Animation') as pbar: # total=len(loaded_u_arrays)
 for i in range(frames_to_do): # for i in range(len(loaded_u_arrays)):
 update(i, loaded_u_arrays, loaded_h_arrays) # Manually update the frame with both datasets
 pbar.update(1) # Update the progress bar

# Save the animation as a video file (e.g., MP4)
print("Converting to .mp4 now. This may take some time. This is normal, wait for Python to finish this process.")
ani.save('diffusion_animation.mp4', writer='ffmpeg', dpi=96, fps=60)

# Close the figure to prevent it from being displayed
plt.close(fig)




-
avutil/mips : Use MMI_{L, S}QC1 macro in {SAVE, RECOVER}_REG
23 juillet 2021, par Jiaxun Yangavutil/mips : Use MMI_L, SQC1 macro in SAVE, RECOVER_REG
SAVE,RECOVER_REG will be available for Loongson2 again,
also comment about the magic.Signed-off-by : Jiaxun Yang <jiaxun.yang@flygoat.com>
Reviewed-by : Shiyou Yin <yinshiyou-hf@loongson.cn>
Signed-off-by : Michael Niedermayer <michael@niedermayer.cc>