Recherche avancée

Médias (91)

Autres articles (99)

  • MediaSPIP 0.1 Beta version

    25 avril 2011, par

    MediaSPIP 0.1 beta is the first version of MediaSPIP proclaimed as "usable".
    The zip file provided here only contains the sources of MediaSPIP in its standalone version.
    To get a working installation, you must manually install all-software dependencies on the server.
    If you want to use this archive for an installation in "farm mode", you will also need to proceed to other manual (...)

  • Modifier la date de publication

    21 juin 2013, par

    Comment changer la date de publication d’un média ?
    Il faut au préalable rajouter un champ "Date de publication" dans le masque de formulaire adéquat :
    Administrer > Configuration des masques de formulaires > Sélectionner "Un média"
    Dans la rubrique "Champs à ajouter, cocher "Date de publication "
    Cliquer en bas de la page sur Enregistrer

  • HTML5 audio and video support

    13 avril 2011, par

    MediaSPIP uses HTML5 video and audio tags to play multimedia files, taking advantage of the latest W3C innovations supported by modern browsers.
    The MediaSPIP player used has been created specifically for MediaSPIP and can be easily adapted to fit in with a specific theme.
    For older browsers the Flowplayer flash fallback is used.
    MediaSPIP allows for media playback on major mobile platforms with the above (...)

Sur d’autres sites (6516)

  • Revision 32884 : auteurs dans les sommaires (page d’accueil+rubriques)

    13 novembre 2009, par fil@… — Log

    auteurs dans les sommaires (page d’accueil+rubriques)

  • 7 Fintech Marketing Strategies to Maximise Profits in 2024

    24 juillet 2024, par Erin

    Fintech investment skyrocketed in 2021, but funding tanked in the following two years. A -63% decline in fintech investment in 2023 saw the worst year in funding since 2017. Luckily, the correction quickly floored, and the fintech industry will recover in 2024, but companies will have to work much harder to secure funds.

    F-Prime’s The 2024 State of Fintech Report called 2023 the year of “regulation on, risk off” amid market pressures and regulatory scrutiny. Funding is rising again, but investors want regulatory compliance and stronger growth performance from fintech ventures.

    Here are seven fintech marketing strategies to generate the growth investors seek in 2024.

    Top fintech marketing challenges in 2024

    Following the worst global investment run since 2017 in 2023, fintech marketers need to readjust their goals to adapt to the current market challenges. The fintech honeymoon is over for Wall Street with regulator scrutiny, closures, and a distinct lack of profitability giving investors cold feet.

    Here are the biggest challenges fintech marketers face in 2024 :

    • Market correction : With fewer rounds and longer times between them, securing funds is a major challenge for fintech businesses. F-Prime’s The 2024 State of Fintech Report warns of “a high probability of significant shutdowns in 2024 and 2025,” highlighting the importance of allocating resources and budgets effectively.
    • Contraction : Aside from VC funding decreasing by 64% in 2023, the payments category now attracts a large majority of fintech investment, meaning there’s a smaller share from a smaller pot to go around for everyone else.
    • Competition : The biggest names in finance have navigated heavy disruption from startups and, for the most part, emerged stronger than ever. Meanwhile, fintech is no longer Wall Street’s hottest commodity as investors turn their attention to AI.
    • Regulations : Regulatory scrutiny of fintech intensified in 2023 – particularly in the US – contributing to the “regulation on, risk off” summary of F-Prime’s report.
    • Investor scrutiny : With market and industry challenges intensifying, investors are putting their money behind “safer” ventures that demonstrate real, sustainable profitability, not short-term growth.
    • Customer loyalty : Even in traditional baking and finance, switching is surging as customers seek providers who better meet their needs. To achieve the sustainable growth investors are looking for, fintech startups need to know their ideal customer profile (ICP), tailor their products/services and fintech marketing campaigns to them, and retain them throughout the customer lifecycle.
    A tree map comparing fintech investment from 2021 to 2023
    (Source)

    The good news for fintech marketers is that the market correction is leveling out in 2024. In The 2024 State of Fintech Report, F-Prime says that “heading into 2024, we see the fintech market amid a rebound,” while McKinsey expects fintech revenue to grow “almost three times faster than those in the traditional banking sector between 2023 and 2028.”

    Winning back investor confidence won’t be easy, though. F-Prime acknowledges that investors are prioritising high-performance fintech ventures, particularly those with high gross margins. Fintech marketers need to abandon the growth-at-all-costs mindset and switch to a data-driven optimisation, growth and revenue system.

    7 fintech marketing strategies

    Given the current state of the fintech industry and relatively low levels of investor confidence, fintech marketers’ priority is building a new culture of sustainable profit. This starts with rethinking priorities and switching up the marketing goals to reflect longer-term ambitions.

    So, here are the fintech marketing strategies that matter most in 2024.

    1. Optimise for profitability over growth at all costs

    To progress from the growth-at-all-cost mindset, fintech marketers need to optimise for different KPIs. Instead of flexing metrics like customer growth rate, fintech companies need to take a more balanced approach to measuring sustainable profitability.

    This means holding on to existing customers – and maximising their value – while they acquire new customers. It also means that, instead of trying to make everyone a target customer, you concentrate on targeting the most valuable prospects, even if it results in a smaller overall user base.

    Optimising for profitability starts with putting vanity metrics in their place and pinpointing the KPIs that represent valuable business growth :

    • Gross profit margin
    • Revenue growth rate
    • Cash flow
    • Monthly active user growth (qualify “active” as completing a transaction)
    • Customer acquisition cost
    • Customer retention rate
    • Customer lifetime value
    • Avg. revenue per user
    • Avg. transactions per month
    • Avg. transaction value

    With a more focused acquisition strategy, you can feed these insights into every company level. For example, you can prioritise customer engagement, revenue, retention, and customer service in product development and customer experience (CX).

    To ensure all marketing efforts are pulling towards these KPIs, you need an attribution system that accurately measures the contribution of each channel.

    Marketing attribution (aka multi-touch attribution) should be used to measure every touchpoint in the customer journey and accurately credit them for driving revenue. This helps you allocate the correct budget to the channels and campaigns, adding real value to the business (e.g., social media marketing vs content marketing).

    Example : Mastercard helps a digital bank acquire 10 million high-value customers

    For example, Mastercard helped a digital bank in Latin America achieve sustainable growth beyond customer acquisition. The fintech company wanted to increase revenue through targeted acquisition and profitable engagement metrics.

    Strategies included :

    • A more targeted acquisition strategy for high-value customers
    • Increasing avg. spend per customer
    • Reducing acquisition cost
    • Customer retention

    As a result, Mastercard’s advisors helped this fintech company acquire 10 million new customers in two years. More importantly, they increased customer spending by 28% while reducing acquisition costs by 13%, creating a more sustainable and profitable growth model.

    2. Use web and app analytics to remotivate users before they disengage

    Engagement is the key to customer retention and lifetime value. To prevent valuable customers from disengaging, you need to intervene when they show early signs of losing interest, but they’re still receptive to your incentivisation tactics (promotions, rewards, milestones, etc.).

    By integrating web and app analytics, you can identify churn patterns and pinpoint the sequences of actions that lead to disengaging. For example, you might determine that customers who only log in once a month, engage with one dashboard, or drop below a certain transaction rate are at high risk for churn.

    Using a tool like Matomo for web and app analytics, you can detect these early signs of disengagement. Once you identify your churn risks, you can create triggers to automatically fire re-engagement campaigns. You can also use CRM and session data to personalize campaigns to directly address the cause of disengagement, e.g., valuable content or incentives to increase transaction rates.

    Example : Dynamic Yield fintech re-engagement case study

    In this Dynamic Yield case study, one leading fintech company uses customer spending patterns to identify those most likely to disengage. The company set up automated campaigns with personalised in-app messaging, offering time-bound incentives to increase transaction rates.

    With fully automated re-engagement campaigns, this fintech company increased customer retention through valuable engagement and revenue-driving actions.

    3. Identify the path your most valuable customers take

    Why optimise web experiences for everyone when you can tailor the online journey for your most valuable customers ? Use customer segmentation to identify the shared interests and habits of your most valuable customers. You can learn a lot about customers based on where the pages they visit and the content they engage with before taking action.

    Use these insights to optimise funnels that motivate prospects displaying the same customer behaviours as your most valuable customers.

    Get 20-40% more data with Matomo

    One of the biggest issues with Google Analytics and many similar tools is that they produce inaccurate data due to data sampling. Once you collect a certain amount of data, Google reports estimates instead of giving you complete, accurate insights.

    This means you could be basing important business decisions on inaccurate data. Furthermore, when investors are nervous about the uncertainty surrounding fintech, the last thing they want is inaccurate data.

    Matomo is the reliable, accurate alternative to Google Analytics that uses no data sampling whatsoever. You get 100% access to your web analytics data, so you can base every decision on reliable insights. With Matomo, you can access between 20% and 40% more data compared to Google Analytics.

    Matomo no data sampling

    With Matomo, you can confidently unlock the full picture of your marketing efforts and give potential investors insights they can trust.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    4. Reduce onboarding dropouts with marketing automation

    Onboarding dropouts kill your chance of getting any return on your customer acquisition cost. You also miss out on developing a long-term relationship with users who fail to complete the onboarding process – a hit on immediate ROI and, potentially, long-term profits.

    The onboarding process also defines the first impression for customers and sets a precedent for their ongoing experience.

    An engaging onboarding experience converts more potential customers into active users and sets them up for repeat engagement and valuable actions.

    Example : Maxio reduces onboarding time by 30% with GUIDEcx

    Onboarding optimisation specialists, GUIDEcx helped Maxio cut six weeks off their onboarding times – a 30% reduction.

    With a shorter onboarding schedule, more customers are committing to close the deal during kick-off calls. Meanwhile, by increasing automated tasks by 20%, the company has unlocked a 40% increase in capacity, allowing it to handle more customers at any given time and multiplying its capacity to generate revenue.

    5. Increase the value in TTFV with personalisation

    Time to first value (TTFV) is a key metric for onboarding optimisation, but some actions are more valuable than others. By personalising the experience for new users, you can increase the value of their first action, increasing motivation to continue using your fintech product/service.

    The onboarding process is an opportunity to learn more about new customers and deliver the most rewarding user experience for their particular needs.

    Example : Betterment helps users put their money to work right away

    Betterment has implemented a quick, personalised onboarding system instead of the typical email signup process. The app wants to help new customers put their money to work right away, optimising for the first transaction during onboarding itself.

    It personalises the experience by prompting new users to choose their goals, set up the right account for them, and select the best portfolio to achieve their goals. They can complete their first investment within a matter of minutes and professional financial advice is only ever a click away.

    Optimise account signups with Matomo

    If you want to create and optimise a signup process like Betterment, you need an analytics system with a complete conversion rate optimisation (CRO) toolkit. 

    A screenshot of conversion reporting in Matomo

    Matomo includes all the CRO features you need to optimise user experience and increase signups. With heatmaps, session recordings, form analytics, and A/B testing, you can make data-driven decisions with confidence.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    6. Use gamification to drive product engagement

    Gamification can create a more engaging experience and increase motivation for customers to continue using a product. The key is to reward valuable actions, engagement time, goal completions, and the small objectives that build up to bigger achievements.

    Gamification is most effective when used to help individuals achieve goals they’ve set for themselves, rather than the goals of others (e.g., an employer). This helps explain why it’s so valuable to fintech experience and how to implement effective gamification into products and services.

    Example : Credit Karma gamifies personal finance

    Credit Karma helps users improve their credit and build their net worth, subtly gamifying the entire experience.

    Users can set their financial goals and link all of their accounts to keep track of their assets in one place. The app helps users “see your wealth grow” with assets, debts, and investments all contributing to their next wealth as one easy-to-track figure.

    7. Personalise loyalty programs for retention and CLV

    Loyalty programs tap into similar psychology as gamification to motivate and reward engagement. Typically, the key difference is that – rather than earning rewards for themselves – you directly reward customers for their long-term loyalty.

    That being said, you can implement elements of gamification and personalisation into loyalty programs, too. 

    Example : Bank of America’s Preferred Rewards

    Bank of America’s Preferred Rewards program implements a tiered rewards system that rewards customers for their combined spending, saving, and borrowing activity.

    The program incentivises all customer activity with the bank and amplifies the rewards for its most active customers. Customers can also set personal finance goals (e.g., saving for retirement) to see which rewards benefit them the most.

    Conclusion

    Fintech marketing needs to catch up with the new priorities of investors in 2024. The pre-pandemic buzz is over, and investors remain cautious as regulatory scrutiny intensifies, security breaches mount up, and the market limps back into recovery.

    To win investor and consumer trust, fintech companies need to drop the growth-at-all-costs mindset and switch to a marketing philosophy of long-term profitability. This is what investors want in an unstable market, and it’s certainly what customers want from a company that handles their money.

    Unlock the full picture of your marketing efforts with Matomo’s robust features and accurate reporting. Trusted by over 1 million websites, Matomo is chosen for its compliance, accuracy, and powerful features that drive actionable insights and improve decision-making.

     Start your free 21-day trial now. No credit card required.

  • ffmpeg produces duplicate pts with "wallclock_as_timestamps 1" option on MKV

    15 avril 2024, par Jax2171

    I need to get real time reference of every keyframe captured by an IP camera. The -wallclock_as_timestamps 1 option seems to do the trick for us, however we are forced to replace the TS output container with MKV to get a correct PTS epoch value 1712996356.833000.

    


    Here is the ffmpeg command used :

    


    ffmpeg -report -use_wallclock_as_timestamps 1 -rtsp_transport tcp -i rtsp://user:password1@192.168.5.21/cam/realmonitor?channel=1channel1[1]=1subtype=0 -c:v copy -c:a aac -copyts -f matroska -y rec.mkv


    


    The capture process runs without any relevant worning or error messages.

    


    However, playing the captured video with any player shows very short and evident but very annoying lags. Upon investigation I discovered that many frame PTSs have the same value. The command I used to show duplicate PTSs is as follows :

    


    ffprobe -v error -show_entries frame=pkt_pts_time -select_streams v -of csv=p=0 rec.mkv | sort | uniq -d


    


    On a recording of about 10 minutes the result of the duplicate PTS is the following :

    


    1713086493.367000
1713086493.368000
1713086493.370000
1713086493.372000
1713086543.714000
1713086558.793000
1713086558.817000
1713086558.872000
1713086561.780000
1713086564.642000
1713086564.657000
1713086564.778000
1713086565.794000
...


    


    I'm not sure if the lag problem is caused by this, however the problem does not occur with the TS container, which however I cannot use due to the PTS values being roundly 33 bit.

    


    The -vsync 0 or -vsync 2 options on input or output didn't help.

    


    This is the log using the -report option :

    


        ffmpeg started on 2024-04-15 at 09:04:38
Report written to "ffmpeg-20240415-090438.log"
Log level: 48
Command line:
ffmpeg -report -stats -hide_banner -use_wallclock_as_timestamps 1 -rtsp_transport tcp -i "rtsp://user:password1@192.168.5.21/cam/realmonitor?channel=1channel1[1]=1subtype=0" -c:v copy -c:a aac -copyts -f matroska -y rec.mkv
Splitting the commandline.
Reading option '-report' ... matched as option 'report' (generate a report) with argument '1'.
Reading option '-stats' ... matched as option 'stats' (print progress report during encoding) with argument '1'.
Reading option '-hide_banner' ... matched as option 'hide_banner' (do not show program banner) with argument '1'.
Reading option '-use_wallclock_as_timestamps' ... matched as AVOption 'use_wallclock_as_timestamps' with argument '1'.
Reading option '-rtsp_transport' ... matched as AVOption 'rtsp_transport' with argument 'tcp'.
Reading option '-i' ... matched as input url with argument 'rtsp://user:password1@192.168.5.21/cam/realmonitor?channel=1channel1[1]=1subtype=0'.
Reading option '-c:v' ... matched as option 'c' (codec name) with argument 'copy'.
Reading option '-c:a' ... matched as option 'c' (codec name) with argument 'aac'.
Reading option '-copyts' ... matched as option 'copyts' (copy timestamps) with argument '1'.
Reading option '-f' ... matched as option 'f' (force format) with argument 'matroska'.
Reading option '-y' ... matched as option 'y' (overwrite output files) with argument '1'.
Reading option 'rec.mkv' ... matched as output url.
Finished splitting the commandline.
Parsing a group of options: global .
Applying option report (generate a report) with argument 1.
Applying option stats (print progress report during encoding) with argument 1.
Applying option hide_banner (do not show program banner) with argument 1.
Applying option copyts (copy timestamps) with argument 1.
Applying option y (overwrite output files) with argument 1.
Successfully parsed a group of options.
Parsing a group of options: input url rtsp://user:password1@192.168.5.21/cam/realmonitor?channel=1channel1[1]=1subtype=0.
Successfully parsed a group of options.
Opening an input file: rtsp://user:password1@192.168.5.21/cam/realmonitor?channel=1channel1[1]=1subtype=0.
[tcp @ 0x1646660] No default whitelist set
[tcp @ 0x1646660] Original list of addresses:
[tcp @ 0x1646660] Address 192.168.5.21 port 554
[tcp @ 0x1646660] Interleaved list of addresses:
[tcp @ 0x1646660] Address 192.168.5.21 port 554
[tcp @ 0x1646660] Starting connection attempt to 192.168.5.21 port 554
[tcp @ 0x1646660] Successfully connected to 192.168.5.21 port 554
[rtsp @ 0x1645e70] SDP:
v=0
o=- 2251950012 2251950012 IN IP4 0.0.0.0
s=Media Server
c=IN IP4 0.0.0.0
t=0 0
a=control:*
a=packetization-supported:DH
a=rtppayload-supported:DH
a=range:npt=now-
a=x-packetization-supported:IV
a=x-rtppayload-supported:IV
m=video 0 RTP/AVP 96
a=control:trackID=0
a=framerate:25.000000
a=rtpmap:96 H264/90000
a=fmtp:96 packetization-mode=1;profile-level-id=4D4028;sprop-parameter-sets=Z01AKKaAeAIn5ZuAgICgAAADACAAAAZQgAA=,aO48gAA=
a=recvonly
m=audio 0 RTP/AVP 97
a=control:trackID=1
a=rtpmap:97 MPEG4-GENERIC/16000
a=fmtp:97 streamtype=5;profile-level-id=1;mode=AAC-hbr;sizelength=13;indexlength=3;indexdeltalength=3;config=1408
a=recvonly

[rtsp @ 0x1645e70] video codec set to: h264
[rtsp @ 0x1645e70] RTP Packetization Mode: 1
[rtsp @ 0x1645e70] RTP Profile IDC: 4d Profile IOP: 40 Level: 28
[rtsp @ 0x1645e70] Extradata set to 0x164af98 (size: 39)
[rtsp @ 0x1645e70] audio codec set to: aac
[rtsp @ 0x1645e70] audio samplerate set to: 16000
[rtsp @ 0x1645e70] audio channels set to: 1
[rtsp @ 0x1645e70] setting jitter buffer size to 0
[rtsp @ 0x1645e70] setting jitter buffer size to 0
[rtsp @ 0x1645e70] hello state=0
Failed to parse interval end specification ''
[h264 @ 0x164ab30] nal_unit_type: 7(SPS), nal_ref_idc: 3
[h264 @ 0x164ab30] nal_unit_type: 8(PPS), nal_ref_idc: 3
[h264 @ 0x164ab30] nal_unit_type: 7(SPS), nal_ref_idc: 3
[h264 @ 0x164ab30] nal_unit_type: 8(PPS), nal_ref_idc: 3
[h264 @ 0x164ab30] nal_unit_type: 7(SPS), nal_ref_idc: 3
[h264 @ 0x164ab30] nal_unit_type: 8(PPS), nal_ref_idc: 3
[h264 @ 0x164ab30] nal_unit_type: 5(IDR), nal_ref_idc: 3
[h264 @ 0x164ab30] Format yuvj420p chosen by get_format().
[h264 @ 0x164ab30] Reinit context to 1920x1088, pix_fmt: yuvj420p
[h264 @ 0x164ab30] nal_unit_type: 1(Coded slice of a non-IDR picture), nal_ref_idc: 3
[h264 @ 0x164ab30] nal_unit_type: 1(Coded slice of a non-IDR picture), nal_ref_idc: 3
[h264 @ 0x164ab30] nal_unit_type: 1(Coded slice of a non-IDR picture), nal_ref_idc: 3
[h264 @ 0x164ab30] nal_unit_type: 1(Coded slice of a non-IDR picture), nal_ref_idc: 3
[h264 @ 0x164ab30] nal_unit_type: 1(Coded slice of a non-IDR picture), nal_ref_idc: 3
[h264 @ 0x164ab30] nal_unit_type: 1(Coded slice of a non-IDR picture), nal_ref_idc: 3
[rtsp @ 0x1645e70] All info found
Input #0, rtsp, from 'rtsp://user:password1@192.168.5.21/cam/realmonitor?channel=1channel1[1]=1subtype=0':
  Metadata:
    title           : Media Server
  Duration: N/A, start: 1713164678.794625, bitrate: N/A
    Stream #0:0, 22, 1/90000: Video: h264 (Main), yuvj420p(pc, bt709, progressive), 1920x1080, 25 fps, 25 tbr, 90k tbn, 50 tbc
    Stream #0:1, 15, 1/16000: Audio: aac (LC), 16000 Hz, mono, fltp
Successfully opened the file.
Parsing a group of options: output url rec.mkv.
Applying option c:v (codec name) with argument copy.
Applying option c:a (codec name) with argument aac.
Applying option f (force format) with argument matroska.
Successfully parsed a group of options.
Opening an output file: rec.mkv.
[file @ 0x1699f30] Setting default whitelist 'file,crypto,data'
Successfully opened the file.
Stream mapping:
  Stream #0:0 -> #0:0 (copy)
  Stream #0:1 -> #0:1 (aac (native) -> aac (native))
Press [q] to stop, [?] for help
cur_dts is invalid st:0 (0) [init:1 i_done:0 finish:0] (this is harmless if it occurs once at the start per stream)
cur_dts is invalid st:1 (0) [init:0 i_done:0 finish:0] (this is harmless if it occurs once at the start per stream)
detected 4 logical cores
[graph_0_in_0_1 @ 0x1682bb0] Setting 'time_base' to value '1/16000'
[graph_0_in_0_1 @ 0x1682bb0] Setting 'sample_rate' to value '16000'
[graph_0_in_0_1 @ 0x1682bb0] Setting 'sample_fmt' to value 'fltp'
[graph_0_in_0_1 @ 0x1682bb0] Setting 'channel_layout' to value '0x4'
[graph_0_in_0_1 @ 0x1682bb0] tb:1/16000 samplefmt:fltp samplerate:16000 chlayout:0x4
[format_out_0_1 @ 0x187f2e0] Setting 'sample_fmts' to value 'fltp'
[format_out_0_1 @ 0x187f2e0] Setting 'sample_rates' to value '96000|88200|64000|48000|44100|32000|24000|22050|16000|12000|11025|8000|7350'
[AVFilterGraph @ 0x164fd70] query_formats: 4 queried, 9 merged, 0 already done, 0 delayed
[matroska @ 0x169c330] get_metadata_duration returned: 0
Output #0, matroska, to 'rec.mkv':
  Metadata:
    title           : Media Server
    encoder         : Lavf58.45.100
    Stream #0:0, 0, 1/1000: Video: h264 (Main) (H264 / 0x34363248), yuvj420p(pc, bt709, progressive), 1920x1080, q=2-31, 25 fps, 25 tbr, 1k tbn, 90k tbc
    Stream #0:1, 0, 1/1000: Audio: aac (LC) ([255][0][0][0] / 0x00FF), 16000 Hz, mono, fltp, 69 kb/s
    Metadata:
      encoder         : Lavc58.91.100 aac
cur_dts is invalid st:0 (0) [init:1 i_done:0 finish:0] (this is harmless if it occurs once at the start per stream)
cur_dts is invalid st:1 (0) [init:1 i_done:0 finish:0] (this is harmless if it occurs once at the start per stream)
cur_dts is invalid st:0 (0) [init:1 i_done:0 finish:0] (this is harmless if it occurs once at the start per stream)
[matroska @ 0x169c330] Starting new cluster with timestamp 1713164678731 at offset 770 bytes
[matroska @ 0x169c330] Writing block of size 581 with pts 1713164678731, dts 1713164678731, duration 64 at relative offset 14 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 517 with pts 1713164678795, dts 1713164678795, duration 64 at relative offset 602 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 376900 with pts 1713164678872, dts 1713164678872, duration 40 at relative offset 1126 in cluster at offset 770. TrackNumber 1, keyframe 1
[matroska @ 0x169c330] Writing block of size 8172 with pts 1713164678912, dts 1713164678912, duration 40 at relative offset 378034 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 672 with pts 1713164678912, dts 1713164678912, duration 64 at relative offset 386213 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 550 with pts 1713164679177, dts 1713164679177, duration 64 at relative offset 386892 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 7654 with pts 1713164679178, dts 1713164679178, duration 40 at relative offset 387449 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 7483 with pts 1713164679213, dts 1713164679213, duration 40 at relative offset 395110 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 7703 with pts 1713164679242, dts 1713164679242, duration 40 at relative offset 402600 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 565 with pts 1713164679242, dts 1713164679242, duration 64 at relative offset 410310 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 7650 with pts 1713164679271, dts 1713164679271, duration 40 at relative offset 410882 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 585 with pts 1713164679271, dts 1713164679271, duration 64 at relative offset 418539 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 8682 with pts 1713164679301, dts 1713164679301, duration 40 at relative offset 419131 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 8888 with pts 1713164679330, dts 1713164679330, duration 40 at relative offset 427820 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 506 with pts 1713164679330, dts 1713164679330, duration 64 at relative offset 436715 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 8019 with pts 1713164679360, dts 1713164679360, duration 40 at relative offset 437228 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 7919 with pts 1713164679361, dts 1713164679361, duration 40 at relative offset 445254 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 7822 with pts 1713164679361, dts 1713164679361, duration 40 at relative offset 453180 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 699 with pts 1713164679361, dts 1713164679361, duration 64 at relative offset 461009 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 619 with pts 1713164679361, dts 1713164679361, duration 64 at relative offset 461715 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 7768 with pts 1713164679362, dts 1713164679362, duration 40 at relative offset 462341 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 8469 with pts 1713164679362, dts 1713164679362, duration 40 at relative offset 470116 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 601 with pts 1713164679362, dts 1713164679362, duration 64 at relative offset 478592 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 559 with pts 1713164679363, dts 1713164679363, duration 64 at relative offset 479200 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 8265 with pts 1713164679366, dts 1713164679366, duration 40 at relative offset 479766 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 7766 with pts 1713164679406, dts 1713164679406, duration 40 at relative offset 488038 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 531 with pts 1713164679415, dts 1713164679415, duration 64 at relative offset 495811 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 7753 with pts 1713164679446, dts 1713164679446, duration 40 at relative offset 496349 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 8274 with pts 1713164679486, dts 1713164679486, duration 40 at relative offset 504109 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 569 with pts 1713164679496, dts 1713164679496, duration 64 at relative offset 512390 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 8445 with pts 1713164679526, dts 1713164679526, duration 40 at relative offset 512966 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 522 with pts 1713164679535, dts 1713164679535, duration 64 at relative offset 521418 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 7922 with pts 1713164679566, dts 1713164679566, duration 40 at relative offset 521947 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 7954 with pts 1713164679606, dts 1713164679606, duration 40 at relative offset 529876 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 503 with pts 1713164679615, dts 1713164679615, duration 64 at relative offset 537837 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 11167 with pts 1713164679646, dts 1713164679646, duration 40 at relative offset 538347 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 503 with pts 1713164679655, dts 1713164679655, duration 64 at relative offset 549521 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 10534 with pts 1713164679686, dts 1713164679686, duration 40 at relative offset 550031 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 7607 with pts 1713164679726, dts 1713164679726, duration 40 at relative offset 560572 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 478 with pts 1713164679772, dts 1713164679772, duration 64 at relative offset 568186 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 7842 with pts 1713164679774, dts 1713164679774, duration 40 at relative offset 568671 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 9862 with pts 1713164679806, dts 1713164679806, duration 40 at relative offset 576520 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Starting new cluster with timestamp 1713164679815 at offset 587166 bytes
[matroska @ 0x169c330] Writing block of size 449 with pts 1713164679815, dts 1713164679815, duration 64 at relative offset 14 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 379456 with pts 1713164679870, dts 1713164679870, duration 40 at relative offset 470 in cluster at offset 587166. TrackNumber 1, keyframe 1
[matroska @ 0x169c330] Writing block of size 415 with pts 1713164679903, dts 1713164679903, duration 64 at relative offset 379934 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 7008 with pts 1713164679905, dts 1713164679905, duration 40 at relative offset 380356 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 6917 with pts 1713164679925, dts 1713164679925, duration 40 at relative offset 387371 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 513 with pts 1713164679935, dts 1713164679935, duration 64 at relative offset 394295 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 7111 with pts 1713164679966, dts 1713164679966, duration 40 at relative offset 394815 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 753 with pts 1713164679975, dts 1713164679975, duration 64 at relative offset 401933 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 7091 with pts 1713164680006, dts 1713164680006, duration 40 at relative offset 402693 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 7045 with pts 1713164680045, dts 1713164680045, duration 40 at relative offset 409791 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 659 with pts 1713164680055, dts 1713164680055, duration 64 at relative offset 416843 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 6983 with pts 1713164680086, dts 1713164680086, duration 40 at relative offset 417509 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 6932 with pts 1713164680127, dts 1713164680127, duration 40 at relative offset 424499 in cluster at offset 587166. TrackNumber 1, keyframe 0
frame=   35 fps=0.0 q=-1.0 size=     512kB time=475879:04:40.20 bitrate=   0.0kbits/s speed=3.35e+09x    
[matroska @ 0x169c330] Writing block of size 691 with pts 1713164680135, dts 1713164680135, duration 64 at relative offset 431438 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 6990 with pts 1713164680166, dts 1713164680166, duration 40 at relative offset 432136 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 651 with pts 1713164680176, dts 1713164680176, duration 64 at relative offset 439133 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 7046 with pts 1713164680206, dts 1713164680206, duration 40 at relative offset 439791 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 7130 with pts 1713164680246, dts 1713164680246, duration 40 at relative offset 446844 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 601 with pts 1713164680255, dts 1713164680255, duration 64 at relative offset 453981 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 7205 with pts 1713164680286, dts 1713164680286, duration 40 at relative offset 454589 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 561 with pts 1713164680295, dts 1713164680295, duration 64 at relative offset 461801 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 6936 with pts 1713164680326, dts 1713164680326, duration 40 at relative offset 462369 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 6822 with pts 1713164680366, dts 1713164680366, duration 40 at relative offset 469312 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 621 with pts 1713164680375, dts 1713164680375, duration 64 at relative offset 476141 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 6845 with pts 1713164680405, dts 1713164680405, duration 40 at relative offset 476769 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 6848 with pts 1713164680445, dts 1713164680445, duration 40 at relative offset 483621 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 588 with pts 1713164680455, dts 1713164680455, duration 64 at relative offset 490476 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 6828 with pts 1713164680486, dts 1713164680486, duration 40 at relative offset 491071 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 546 with pts 1713164680495, dts 1713164680495, duration 64 at relative offset 497906 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 6845 with pts 1713164680526, dts 1713164680526, duration 40 at relative offset 498459 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 6924 with pts 1713164680566, dts 1713164680566, duration 40 at relative offset 505311 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 508 with pts 1713164680576, dts 1713164680576, duration 64 at relative offset 512242 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 6844 with pts 1713164680606, dts 1713164680606, duration 40 at relative offset 512757 in cluster at offset 587166. TrackNumber 1, keyframe 0
frame=   48 fps= 47 q=-1.0 size=     512kB time=475879:04:40.72 bitrate=   0.0kbits/s speed=1.66e+09x    
[matroska @ 0x169c330] Writing block of size 587 with pts 1713164680615, dts 1713164680615, duration 64 at relative offset 519608 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 6859 with pts 1713164680645, dts 1713164680645, duration 40 at relative offset 520202 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 6855 with pts 1713164680686, dts 1713164680686, duration 40 at relative offset 527068 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 573 with pts 1713164680695, dts 1713164680695, duration 64 at relative offset 533930 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 6881 with pts 1713164680726, dts 1713164680726, duration 40 at relative offset 534510 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 10773 with pts 1713164680766, dts 1713164680766, duration 40 at relative offset 541398 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 520 with pts 1713164680775, dts 1713164680775, duration 64 at relative offset 552178 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 6923 with pts 1713164680805, dts 1713164680805, duration 40 at relative offset 552705 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Starting new cluster with timestamp 1713164680815 at offset 1146808 bytes
[matroska @ 0x169c330] Writing block of size 580 with pts 1713164680815, dts 1713164680815, duration 64 at relative offset 14 in cluster at offset 1146808. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 380085 with pts 1713164680864, dts 1713164680864, duration 40 at relative offset 601 in cluster at offset 1146808. TrackNumber 1, keyframe 1
[matroska @ 0x169c330] Writing block of size 9916 with pts 1713164680896, dts 1713164680896, duration 40 at relative offset 380694 in cluster at offset 1146808. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 541 with pts 1713164680901, dts 1713164680901, duration 64 at relative offset 390617 in cluster at offset 1146808. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 5877 with pts 1713164680925, dts 1713164680925, duration 40 at relative offset 391165 in cluster at offset 1146808. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 529 with pts 1713164680935, dts 1713164680935, duration 64 at relative offset 397049 in cluster at offset 1146808. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 6661 with pts 1713164680966, dts 1713164680966, duration 40 at relative offset 397585 in cluster at offset 1146808. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] end duration = 1713164681006
[matroska @ 0x169c330] stream 0 end duration = 1713164681006
[matroska @ 0x169c330] stream 1 end duration = 1713164680999
frame=   54 fps= 42 q=-1.0 Lsize=    1515kB time=475879:04:40.99 bitrate=   0.0kbits/s speed=1.33e+09x    
video:1493kB audio:20kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 0.099897%
Input file #0 (rtsp://user:password1@192.168.5.21/cam/realmonitor?channel=1channel1[1]=1subtype=0):
  Input stream #0:0 (video): 54 packets read (1529156 bytes); 
  Input stream #0:1 (audio): 35 packets read (9268 bytes); 35 frames decoded (35840 samples); 
  Total: 89 packets (1538424 bytes) demuxed
Output file #0 (rec.mkv):
  Output stream #0:0 (video): 54 packets muxed (1529156 bytes); 
  Output stream #0:1 (audio): 35 frames encoded (35840 samples); 36 packets muxed (20446 bytes); 
  Total: 90 packets (1549602 bytes) muxed
35 frames successfully decoded, 0 decoding errors
[AVIOContext @ 0x1667620] Statistics: 2 seeks, 7 writeouts
[aac @ 0x1673880] Qavg: 142.738
Exiting normally, received signal 15.


    


    In this short 3 second capture the duplicate timestamps are 1713164679.361000 and 1713164679.362000.

    


    How can I solve this problem ? What different approach could I use to achieve this goal ?

    


    Thanks in advance.