Recherche avancée

Médias (1)

Mot : - Tags -/3GS

Autres articles (102)

  • Ecrire une actualité

    21 juin 2013, par

    Présentez les changements dans votre MédiaSPIP ou les actualités de vos projets sur votre MédiaSPIP grâce à la rubrique actualités.
    Dans le thème par défaut spipeo de MédiaSPIP, les actualités sont affichées en bas de la page principale sous les éditoriaux.
    Vous pouvez personnaliser le formulaire de création d’une actualité.
    Formulaire de création d’une actualité Dans le cas d’un document de type actualité, les champs proposés par défaut sont : Date de publication ( personnaliser la date de publication ) (...)

  • Le profil des utilisateurs

    12 avril 2011, par

    Chaque utilisateur dispose d’une page de profil lui permettant de modifier ses informations personnelle. Dans le menu de haut de page par défaut, un élément de menu est automatiquement créé à l’initialisation de MediaSPIP, visible uniquement si le visiteur est identifié sur le site.
    L’utilisateur a accès à la modification de profil depuis sa page auteur, un lien dans la navigation "Modifier votre profil" est (...)

  • Publier sur MédiaSpip

    13 juin 2013

    Puis-je poster des contenus à partir d’une tablette Ipad ?
    Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir

Sur d’autres sites (11658)

  • PHP imagick equivalent of -define png:color-type=6

    5 avril 2016, par user1661677

    I’m needing to save my PNG files with a different color type so ffmpeg can process them correctly. I’m using the PHP library for imagemagick, and I’m trying to figure out how to implement the following (command line) in imagick PHP :

    -define png:color-type=6

  • What type of stream does AVMediaType AVMEDIA_TYPE_NB represent

    6 juillet 2022, par Bernie

    The FFmpeg AVMediaType enum contains AVMEDIA_TYPE_NB.
What type of data stream does this contain ?
The name isn't very descriptive and the documentation doesn't describe it either.

    


    Search results seem to indicate that it's used as a catch all value to remove packets. with a codec_type of AVMEDIA_TYPE_NB ever exist ?

    


  • WARN : Tried to pass invalid video frame, marking as broken : Your frame has data type int64, but we require uint8

    5 septembre 2019, par Tavo Diaz

    I am doing some Udemy AI courses and came across with one that "teaches" a bidimensional cheetah how to walk. I was doing the exercises on my computer, but it takes too much time. I decided to use Google Cloud to run the code and see the results some hours after. Nevertheless, when I run the code I get the following error " WARN : Tried to pass
    invalid video frame, marking as broken : Your frame has data type int64, but we require uint8 (i.e. RGB values from 0-255)".

    After the code is executed, I see into the folder and I don’t see any videos (just the meta info).

    Some more info (if it helps) :
    I have a 1 CPU (4g), SSD Ubuntu 16.04 LTS

    I have not tried anything yet to solve it because I don´t know what to try. Im looking for solutions on the web, but nothing I could try.

    This is the code

    import os
    import numpy as np
    import gym
    from gym import wrappers
    import pybullet_envs


    class Hp():
       def __init__(self):
           self.nb_steps = 1000
           self.episode_lenght =   1000
           self.learning_rate = 0.02
           self.nb_directions = 32
           self.nb_best_directions = 32
           assert self.nb_best_directions <= self.nb_directions
           self.noise = 0.03
           self.seed = 1
           self.env_name = 'HalfCheetahBulletEnv-v0'


    class Normalizer():
       def __init__(self, nb_inputs):
           self.n = np.zeros(nb_inputs)
           self.mean = np.zeros(nb_inputs)
           self.mean_diff = np.zeros(nb_inputs)
           self.var = np.zeros(nb_inputs)

       def observe(self, x):
           self.n += 1.
           last_mean = self.mean.copy()
           self.mean += (x - self.mean) / self.n
           #abajo es el online numerator update
           self.mean_diff += (x - last_mean) * (x - self.mean)
           #abajo online computation de la varianza
           self.var = (self.mean_diff / self.n).clip(min = 1e-2)  

       def normalize(self, inputs):
           obs_mean = self.mean
           obs_std = np.sqrt(self.var)
           return (inputs - obs_mean) / obs_std

    class Policy():
       def __init__(self, input_size, output_size):
           self.theta = np.zeros((output_size, input_size))

       def evaluate(self, input, delta = None, direction = None):
           if direction is None:
               return self.theta.dot(input)
           elif direction == 'positive':
               return (self.theta + hp.noise * delta).dot(input)
           else:
               return (self.theta - hp.noise * delta).dot(input)

       def sample_deltas(self):
           return [np.random.randn(*self.theta.shape) for _ in range(hp.nb_directions)]

       def update (self, rollouts, sigma_r):
           step = np.zeros(self.theta.shape)
           for r_pos, r_neg, d in rollouts:
               step += (r_pos - r_neg) * d
           self.theta += hp.learning_rate / (hp.nb_best_directions * sigma_r) * step


    def explore(env, normalizer, policy, direction = None, delta = None):
       state = env.reset()
       done = False
       num_plays = 0.
       #abajo puede ser promedio de las rewards
       sum_rewards = 0
       while not done and num_plays < hp.episode_lenght:
           normalizer.observe(state)
           state = normalizer.normalize(state)
           action = policy.evaluate(state, delta, direction)
           state, reward, done, _ = env.step(action)
           reward = max(min(reward, 1), -1)
           #abajo sería poner un promedio
           sum_rewards += reward
           num_plays += 1
       return sum_rewards

    def train (env, policy, normalizer, hp):
       for step in range(hp.nb_steps):
           #iniciar las perturbaciones deltas y los rewards positivos/negativos
           deltas = policy.sample_deltas()
           positive_rewards = [0] * hp.nb_directions
           negative_rewards = [0] * hp.nb_directions
           #sacar las rewards en la dirección positiva
           for k in range(hp.nb_directions):
               positive_rewards[k] = explore(env, normalizer, policy, direction = 'positive', delta = deltas[k])
           #sacar las rewards en dirección negativo
           for k in range(hp.nb_directions):
               negative_rewards[k] = explore(env, normalizer, policy, direction = 'negative', delta = deltas[k])
           #sacar todas las rewards para sacar la desvest
           all_rewards = np.array(positive_rewards + negative_rewards)
           sigma_r = all_rewards.std()
           #acomodar los rollauts por el max (r_pos, r_neg) y seleccionar la mejor dirección
           scores = {k:max(r_pos, r_neg) for k, (r_pos, r_neg) in enumerate(zip(positive_rewards, negative_rewards))}
           order = sorted(scores.keys(), key = lambda x:scores[x])[:hp.nb_best_directions]
           rollouts = [(positive_rewards[k], negative_rewards[k], deltas[k]) for k in order]
           #actualizar policy
           policy.update (rollouts, sigma_r)
           #poner el final reward del policy luego del update
           reward_evaluation = explore (env, normalizer, policy)
           print('Paso: ', step, 'Lejania: ', reward_evaluation)

    def mkdir(base, name):
       path = os.path.join(base, name)
       if not os.path.exists(path):
           os.makedirs(path)
       return path
    work_dir = mkdir('exp', 'brs')
    monitor_dir = mkdir(work_dir, 'monitor')

    hp = Hp()
    np.random.seed(hp.seed)
    env = gym.make(hp.env_name)
    env = wrappers.Monitor(env, monitor_dir, force = True)
    nb_inputs = env.observation_space.shape[0]
    nb_outputs = env.action_space.shape[0]
    policy = Policy(nb_inputs, nb_outputs)
    normalizer = Normalizer(nb_inputs)
    train(env, policy, normalizer, hp)