Recherche avancée

Médias (91)

Autres articles (82)

  • MediaSPIP 0.1 Beta version

    25 avril 2011, par

    MediaSPIP 0.1 beta is the first version of MediaSPIP proclaimed as "usable".
    The zip file provided here only contains the sources of MediaSPIP in its standalone version.
    To get a working installation, you must manually install all-software dependencies on the server.
    If you want to use this archive for an installation in "farm mode", you will also need to proceed to other manual (...)

  • MediaSPIP version 0.1 Beta

    16 avril 2011, par

    MediaSPIP 0.1 beta est la première version de MediaSPIP décrétée comme "utilisable".
    Le fichier zip ici présent contient uniquement les sources de MediaSPIP en version standalone.
    Pour avoir une installation fonctionnelle, il est nécessaire d’installer manuellement l’ensemble des dépendances logicielles sur le serveur.
    Si vous souhaitez utiliser cette archive pour une installation en mode ferme, il vous faudra également procéder à d’autres modifications (...)

  • Le profil des utilisateurs

    12 avril 2011, par

    Chaque utilisateur dispose d’une page de profil lui permettant de modifier ses informations personnelle. Dans le menu de haut de page par défaut, un élément de menu est automatiquement créé à l’initialisation de MediaSPIP, visible uniquement si le visiteur est identifié sur le site.
    L’utilisateur a accès à la modification de profil depuis sa page auteur, un lien dans la navigation "Modifier votre profil" est (...)

Sur d’autres sites (6036)

  • tfds.features.Video Usage for video decoding in tensorflow 2

    20 mai 2020, par Sandeep

    I am trying to decode a video in tensorflow 2 using tfds.features.Video , so that the output is a "tf.Tensor of type tf.uint8 and shape [num_frames, height, width, channels]" using following code :

    



    import numpy as np
import pandas as pd
import tensorflow as tf
import tensorflow_datasets as tfds
df_trains= pd.DataFrame()
df_trains['video_files']= ['aa.mp4']

files_ds = tf.data.Dataset.from_tensor_slices(df_trains.video_files)

video_class = tfds.features.Video(shape=(None, 1080, 1920,3), encoding_format='png', ffmpeg_extra_args=())

a= video_class.decode_example(files_ds)


    



    However it generates following error : 
"AssertionError: Feature Video can only be decoded when defined as top-level feature, through info.features.decode_example()"

    



    I am unable to solve it, please help in this regard.

    


  • Sinch Video calling not working with ffmpeg video cropping

    29 mars 2016, par Mubina Shaikh

    My project having ffmpeg video cropping libs,I have added the sinch files under src/main/jniLibs,what happen is project runs successfully but when initiate the video call of sinch blank white color screen appears.Also try to add this code in .mk files of video cropping libs as there is no .mk file is there for sinch,but it still not working.

    The code added in .mk files to load the sinch lib module.

    include $(CLEAR_VARS)

    LOCAL_MODULE := libsinch-android-rtc

    LOCAL_STATIC_LIBRARIES := sinch-android-rtc-3.9.3

    LOCAL_LDLIBS := -llog

    include $(BUILD_SHARED_LIBRARY)
  • Find frames in the video that are similar to the static image, to crop the video

    13 septembre 2024, par Nguyen Van Kufu

    I use opencv with ffmpeg to cut the video. Specifically, find the frame in the video that is the same as the picture, then cut the video at the time the video frame is the same as the picture.

    


    I found the code on google and edited it according to my needs, but when it comes to comparing frames and still images, I don't know how to ask you to add a comparison section to cut the video.

    


    import numpy as np
import cv2
import time
from skimage.metrics import structural_similarity as compare_ssim

hinh = cv2.imread("f:\\x.png")
hinh1 = cv2.resize(hinh, (500, 300))
cap = cv2.VideoCapture('f:\\tt.mp4')
prev_frame_time = 0
new_frame_time = 0
cv2.imshow('hinh', hinh1)

while(cap.isOpened()):
    ret, frame = cap.read()

    if not ret:
        break

    gray = frame

    gray = cv2.resize(gray, (500, 300))
    font = cv2.FONT_HERSHEY_SIMPLEX
    new_frame_time = time.time()

    fps = 1/(new_frame_time-prev_frame_time)
    prev_frame_time = new_frame_time

    fps = int(fps)

    fps = str(fps)

    cv2.putText(gray, fps, (7, 70), font, 3, (100, 255, 0), 3, cv2.LINE_AA)
    ##############

    # displaying the frame with fps

    cv2.imshow('frame', gray)

    # press 'Q' if you want to exit
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()