
Recherche avancée
Médias (91)
-
Spoon - Revenge !
15 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
My Morning Jacket - One Big Holiday
15 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
Zap Mama - Wadidyusay ?
15 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
David Byrne - My Fair Lady
15 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
Beastie Boys - Now Get Busy
15 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
Granite de l’Aber Ildut
9 septembre 2011, par
Mis à jour : Septembre 2011
Langue : français
Type : Texte
Autres articles (92)
-
Amélioration de la version de base
13 septembre 2013Jolie sélection multiple
Le plugin Chosen permet d’améliorer l’ergonomie des champs de sélection multiple. Voir les deux images suivantes pour comparer.
Il suffit pour cela d’activer le plugin Chosen (Configuration générale du site > Gestion des plugins), puis de configurer le plugin (Les squelettes > Chosen) en activant l’utilisation de Chosen dans le site public et en spécifiant les éléments de formulaires à améliorer, par exemple select[multiple] pour les listes à sélection multiple (...) -
Emballe médias : à quoi cela sert ?
4 février 2011, parCe plugin vise à gérer des sites de mise en ligne de documents de tous types.
Il crée des "médias", à savoir : un "média" est un article au sens SPIP créé automatiquement lors du téléversement d’un document qu’il soit audio, vidéo, image ou textuel ; un seul document ne peut être lié à un article dit "média" ; -
XMP PHP
13 mai 2011, parDixit Wikipedia, XMP signifie :
Extensible Metadata Platform ou XMP est un format de métadonnées basé sur XML utilisé dans les applications PDF, de photographie et de graphisme. Il a été lancé par Adobe Systems en avril 2001 en étant intégré à la version 5.0 d’Adobe Acrobat.
Étant basé sur XML, il gère un ensemble de tags dynamiques pour l’utilisation dans le cadre du Web sémantique.
XMP permet d’enregistrer sous forme d’un document XML des informations relatives à un fichier : titre, auteur, historique (...)
Sur d’autres sites (18330)
-
ffmpeg + AWS Lambda issues. Won't compress full video
7 juillet 2022, par Joesph Stah LynnSo I followed this tutorial to set everything up, and changed the function a bit to compress video, but no matter what I try, on larger videos (basically anything over 50-100MB), the output file will always be cut short, and depending on the encoding settings I'm using, will be cut by different amounts. I tried using the solution found here, adding a -nostdin flag to my ffmpeg command, but that also didn't seem to fix the issue.

Another odd thing, is no matter what I try, if I remove the '-f mpegts' flag, the output video will be 0B.

My Lambda function is set up with 3008MB of Memory (submitted a ticket to get my limit upped so I can use the full 10240MB available), and 2048MB of Ephemeral storage (I honestly am not sure if I need anything more than the minimum 512, but I upped it to try and fix the issue). When I check my cloudwatch logs, on really large files, it will occasionally time out, but other than that, I will get no error messages, just the standard start, end, and billable time messages.

This is the code for my lambda function.


import json
import os
import subprocess
import shlex
import boto3

S3_DESTINATION_BUCKET = "rw-video-out"
SIGNED_URL_TIMEOUT = 600

def lambda_handler(event, context):

 s3_source_bucket = event['Records'][0]['s3']['bucket']['name']
 s3_source_key = event['Records'][0]['s3']['object']['key']

 s3_source_basename = os.path.splitext(os.path.basename(s3_source_key))[0]
 s3_destination_filename = s3_source_basename + "-comp.mp4"

 s3_client = boto3.client('s3')
 s3_source_signed_url = s3_client.generate_presigned_url('get_object',
 Params={'Bucket': s3_source_bucket, 'Key': s3_source_key},
 ExpiresIn=SIGNED_URL_TIMEOUT)

 ffmpeg_cmd = f"/opt/bin/ffmpeg -nostdin -i {s3_source_signed_url} -f mpegts libx264 -preset fast -crf 28 -c:a copy - "
 command1 = shlex.split(ffmpeg_cmd)
 p1 = subprocess.run(command1, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
 resp = s3_client.put_object(Body=p1.stdout, Bucket=S3_DESTINATION_BUCKET, Key=s3_destination_filename)
 s3 = boto3.resource('s3')
 s3.Object(s3_source_bucket,s3_source_key).delete()

 return {
 'statusCode': 200,
 'body': json.dumps('Processing complete successfully')
 }



This is the code from the solution I mentioned, but when I try using this code, I get output.mp4 not found errors


def lambda_handler(event, context):
 print(event)
 os.chdir('/tmp')
 s3_source_bucket = event['Records'][0]['s3']['bucket']['name']
 s3_source_key = event['Records'][0]['s3']['object']['key']

 s3_source_basename = os.path.splitext(os.path.basename(s3_source_key))[0]
 s3_destination_filename = s3_source_basename + ".mp4"

 s3_client = boto3.client('s3')
 s3_source_signed_url = s3_client.generate_presigned_url('get_object',
 Params={'Bucket': s3_source_bucket, 'Key': s3_source_key},
 ExpiresIn=SIGNED_URL_TIMEOUT)
 print(s3_source_signed_url)
 s3_client.download_file(s3_source_bucket,s3_source_key,s3_source_key)
 # ffmpeg_cmd = "/opt/bin/ffmpeg -framerate 25 -i \"" + s3_source_signed_url + "\" output.mp4 "
 ffmpeg_cmd = f"/opt/bin/ffmpeg -framerate 25 -i {s3_source_key} output.mp4 "
 # command1 = shlex.split(ffmpeg_cmd)
 # print(command1)
 os.system(ffmpeg_cmd)
 # os.system('ls')
 # p1 = subprocess.run(command1, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
 file = 'output.mp4'
 resp = s3_client.put_object(Body=open(file,"rb"), Bucket=S3_DESTINATION_BUCKET, Key=s3_destination_filename)
 # resp = s3_client.put_object(Body=p1.stdout, Bucket=S3_DESTINATION_BUCKET, Key=s3_destination_filename)
 s3 = boto3.resource('s3')
 s3.Object(s3_source_bucket,s3_source_key).delete()
 return {
 'statusCode': 200,
 'body': json.dumps('Processing complete successfully')
 }



Any help would be greatly appreciated.


-
lavc/aarch64 : motion estimation functions in neon
26 juin 2022, par Swinney, Jonathanlavc/aarch64 : motion estimation functions in neon
- ff_pix_abs16_neon
- ff_pix_abs16_xy2_neonIn direct micro benchmarks of these ff functions verses their C implementations,
these functions performed as follows on AWS Graviton 3.ff_pix_abs16_neon :
pix_abs_0_0_c : 141.1
pix_abs_0_0_neon : 19.6ff_pix_abs16_xy2_neon :
pix_abs_0_3_c : 269.1
pix_abs_0_3_neon : 39.3Tested with :
./tests/checkasm/checkasm —test=motion —bench —disable-linux-perfSigned-off-by : Jonathan Swinney <jswinney@amazon.com>
Signed-off-by : Martin Storsjö <martin@martin.st>- [DH] libavcodec/aarch64/Makefile
- [DH] libavcodec/aarch64/me_cmp_init_aarch64.c
- [DH] libavcodec/aarch64/me_cmp_neon.S
- [DH] libavcodec/me_cmp.c
- [DH] libavcodec/me_cmp.h
- [DH] tests/checkasm/Makefile
- [DH] tests/checkasm/checkasm.c
- [DH] tests/checkasm/checkasm.h
- [DH] tests/checkasm/motion.c
- [DH] tests/fate/checkasm.mak
-
FFMPEG on Heroku exceeds memory quota in testing
5 juillet 2022, par Patrick VelliaAfter following this tutorial, and getting it to work locally on my own development environment, before really getting my hands dirty and working deeper on my own project implementation, I decided to push it up to Heroku to test in a staging environment.


I had to have Heroku add the FFMPEG build-pack and turn on the Redis Server for ActionCable to work.


I didn't link the staging to a cloud storage bucket on Google or Amazon yet, just allowed it to upload directly to the dymo disk for testing. So it would go into the storage directory as it would in development for now.


the test MOV file is 186 MB in size.


The system uploaded the file fine.


According to the logs, it then copied the file from storage to tmp as the tutorial has us do.


Then it called streamio-ffmpeg's transcode method.


At this point, Heroku forcibly kills the dymo because it far exceeds the memory quota.


As this is a test environment, it's only on the free tier of Heroku.


I'm thinking I won't be able to directly process video projects on Heroku itself, unless I'm wrong ? Would it be better to call an API like Cloud Functions or Amazon Lambda, or spin up a Compute Engine long enough to process the FFMPEG command ?