Recherche avancée

Médias (29)

Mot : - Tags -/Musique

Autres articles (11)

  • La sauvegarde automatique de canaux SPIP

    1er avril 2010, par

    Dans le cadre de la mise en place d’une plateforme ouverte, il est important pour les hébergeurs de pouvoir disposer de sauvegardes assez régulières pour parer à tout problème éventuel.
    Pour réaliser cette tâche on se base sur deux plugins SPIP : Saveauto qui permet une sauvegarde régulière de la base de donnée sous la forme d’un dump mysql (utilisable dans phpmyadmin) mes_fichiers_2 qui permet de réaliser une archive au format zip des données importantes du site (les documents, les éléments (...)

  • Keeping control of your media in your hands

    13 avril 2011, par

    The vocabulary used on this site and around MediaSPIP in general, aims to avoid reference to Web 2.0 and the companies that profit from media-sharing.
    While using MediaSPIP, you are invited to avoid using words like "Brand", "Cloud" and "Market".
    MediaSPIP is designed to facilitate the sharing of creative media online, while allowing authors to retain complete control of their work.
    MediaSPIP aims to be accessible to as many people as possible and development is based on expanding the (...)

  • Submit enhancements and plugins

    13 avril 2011

    If you have developed a new extension to add one or more useful features to MediaSPIP, let us know and its integration into the core MedisSPIP functionality will be considered.
    You can use the development discussion list to request for help with creating a plugin. As MediaSPIP is based on SPIP - or you can use the SPIP discussion list SPIP-Zone.

Sur d’autres sites (2197)

  • ffmpeg - when scaling, how to keep shapes of people's heads

    19 janvier 2017, par Dave

    Ok, I’m quite familiar with FFMPEG utility in general, and have used it for
    years to cut short snippets from videos, etc. But it’s only in the last
    month that and I decided to learn to use it to transcode with video-filters
    etc. (Before that, I was using other tools such as ’Handbrake’ and ’FreeMake’
    and VLC, etc.)

    For my ffmpeg transcodes, my target output resolution will always be constant, from one transcode run to the next. But the resolution and display aspect-ratio of the input file, from one transcode run to the next, will vary...could be almost any values.
    The input files will never already have black-bars when displayed.

    So, the relevant portion [ i.e. the video-filter(s) part) of my cmd line ] presently is as follows :

    ffmpeg ... -vf "scale=720:406,setsar=1,pad=720:506:0:40:Black" ...

    Also note : I do NOT use the "-aspect" option in the cmd-line. (Maybe I’ll
    need to (???) to solve my issue, but I’m unsure about how that interacts
    with scaling.)

    ( EDIT : Oh, I happen to have chosen that resolution value of 720x406, for
    the image-area (i.e. inside the top/bottom black bars) because it
    has an aspect ratio of 16:9 (Of course, 16:9 ratio is common these days. )

    My cmd always executes cleanly and produces an output file (a WebM, tho I doubt
    that container types and/or vcodec choices matter at all to scaling algorithm issues).

    So the issue/problem that I’m trying to solve is how to prevent any stretching
    in either direction. In other words, a round soccer ball in the input file
    must yield a round ball in the output file ! (NOT oval-shaped in either axis).

    ( Edit #2 : Oh, I forgot to mention that I’m not have the same amount of stretching from one ffmpeg output file to the next. Sometimes there is
    no stretch in my output file, and with some other input file, the
    people are too tall in the output, and some other output file will have
    people are too wide. I’m assuming
    there is some single cmd that will always work for each randomly sized
    input file, WITHOUT having to resort to examining meta-data of each
    input and then having to adjust portions of the needed ffmpeg cmd.
    I assume this because I have used a tool called "FreeMake" that needs
    no such adjustment. When you do a ’scale’ with that program, it asks
    you to choose one of four adjustment-algorithms labeled "original"
    "stretched", "zoom..." and "auto". If I recall correctly, it was the
    "auto" choice that prevented any stretching.)

    The goal of that last filter (i.e. the "pad=720:506:0:40:Black" phrase) is to
    add a black bar of 40 pixels to the top and 60 pixels to the bottom.
    (That filter IS producing the black-bands, as desired. I mention it,
    because I’m unsure whether it could be having any effect on the altered
    shape of the ’round soccer ball’). If the "pad" filter IS part of the
    issue, then maybe I’ll need to make multiple ffmpeg cmds to achieve
    my overall goal (!?!?). [I’d LIKE to be able to do everything in just
    one ffmpeg cmd, as shown.]

    OK ?

    So are there any image-processing and ffmpeg gurus out there that
    know how to fix my problem ?

    TIA...

    Dave

  • aarch64 : Add NEON optimizations for 10 and 12 bit vp9 MC

    14 décembre 2016, par Martin Storsjö
    aarch64 : Add NEON optimizations for 10 and 12 bit vp9 MC
    

    This work is sponsored by, and copyright, Google.

    This has mostly got the same differences to the 8 bit version as
    in the arm version. For the horizontal filters, we do 16 pixels
    in parallel as well. For the 8 pixel wide vertical filters, we can
    accumulate 4 rows before storing, just as in the 8 bit version.

    Examples of runtimes vs the 32 bit version, on a Cortex A53 :
    ARM AArch64
    vp9_avg4_10bpp_neon : 35.7 30.7
    vp9_avg8_10bpp_neon : 93.5 84.7
    vp9_avg16_10bpp_neon : 324.4 296.6
    vp9_avg32_10bpp_neon : 1236.5 1148.2
    vp9_avg64_10bpp_neon : 4639.6 4571.1
    vp9_avg_8tap_smooth_4h_10bpp_neon : 130.0 128.0
    vp9_avg_8tap_smooth_4hv_10bpp_neon : 440.0 440.5
    vp9_avg_8tap_smooth_4v_10bpp_neon : 114.0 105.5
    vp9_avg_8tap_smooth_8h_10bpp_neon : 327.0 314.0
    vp9_avg_8tap_smooth_8hv_10bpp_neon : 918.7 865.4
    vp9_avg_8tap_smooth_8v_10bpp_neon : 330.0 300.2
    vp9_avg_8tap_smooth_16h_10bpp_neon : 1187.5 1155.5
    vp9_avg_8tap_smooth_16hv_10bpp_neon : 2663.1 2591.0
    vp9_avg_8tap_smooth_16v_10bpp_neon : 1107.4 1078.3
    vp9_avg_8tap_smooth_64h_10bpp_neon : 17754.6 17454.7
    vp9_avg_8tap_smooth_64hv_10bpp_neon : 33285.2 33001.5
    vp9_avg_8tap_smooth_64v_10bpp_neon : 16066.9 16048.6
    vp9_put4_10bpp_neon : 25.5 21.7
    vp9_put8_10bpp_neon : 56.0 52.0
    vp9_put16_10bpp_neon/armv8 : 183.0 163.1
    vp9_put32_10bpp_neon/armv8 : 678.6 563.1
    vp9_put64_10bpp_neon/armv8 : 2679.9 2195.8
    vp9_put_8tap_smooth_4h_10bpp_neon : 120.0 118.0
    vp9_put_8tap_smooth_4hv_10bpp_neon : 435.2 435.0
    vp9_put_8tap_smooth_4v_10bpp_neon : 107.0 98.2
    vp9_put_8tap_smooth_8h_10bpp_neon : 303.0 290.0
    vp9_put_8tap_smooth_8hv_10bpp_neon : 893.7 828.7
    vp9_put_8tap_smooth_8v_10bpp_neon : 305.5 263.5
    vp9_put_8tap_smooth_16h_10bpp_neon : 1089.1 1059.2
    vp9_put_8tap_smooth_16hv_10bpp_neon : 2578.8 2452.4
    vp9_put_8tap_smooth_16v_10bpp_neon : 1009.5 933.5
    vp9_put_8tap_smooth_64h_10bpp_neon : 16223.4 15918.6
    vp9_put_8tap_smooth_64hv_10bpp_neon : 32153.0 31016.2
    vp9_put_8tap_smooth_64v_10bpp_neon : 14516.5 13748.1

    These are generally about as fast as the corresponding ARM
    routines on the same CPU (at least on the A53), in most cases
    marginally faster.

    The speedup vs C code is around 4-9x.

    Signed-off-by : Martin Storsjö <martin@martin.st>

    • [DH] libavcodec/aarch64/Makefile
    • [DH] libavcodec/aarch64/vp9dsp_init.h
    • [DH] libavcodec/aarch64/vp9dsp_init_10bpp_aarch64.c
    • [DH] libavcodec/aarch64/vp9dsp_init_12bpp_aarch64.c
    • [DH] libavcodec/aarch64/vp9dsp_init_16bpp_aarch64_template.c
    • [DH] libavcodec/aarch64/vp9dsp_init_aarch64.c
    • [DH] libavcodec/aarch64/vp9mc_16bpp_neon.S
  • arm : Add NEON optimizations for 10 and 12 bit vp9 loop filter

    5 janvier 2017, par Martin Storsjö
    arm : Add NEON optimizations for 10 and 12 bit vp9 loop filter
    

    This work is sponsored by, and copyright, Google.

    This is pretty much similar to the 8 bpp version, but in some senses
    simpler. All input pixels are 16 bits, and all intermediates also fit
    in 16 bits, so there’s no lengthening/narrowing in the filter at all.

    For the full 16 pixel wide filter, we can only process 4 pixels at a time
    (using an implementation very much similar to the one for 8 bpp),
    but we can do 8 pixels at a time for the 4 and 8 pixel wide filters with
    a different implementation of the core filter.

    Examples of relative speedup compared to the C version, from checkasm :
    Cortex A7 A8 A9 A53
    vp9_loop_filter_h_4_8_10bpp_neon : 1.83 2.16 1.40 2.09
    vp9_loop_filter_h_8_8_10bpp_neon : 1.39 1.67 1.24 1.70
    vp9_loop_filter_h_16_8_10bpp_neon : 1.56 1.47 1.10 1.81
    vp9_loop_filter_h_16_16_10bpp_neon : 1.94 1.69 1.33 2.24
    vp9_loop_filter_mix2_h_44_16_10bpp_neon : 2.01 2.27 1.67 2.39
    vp9_loop_filter_mix2_h_48_16_10bpp_neon : 1.84 2.06 1.45 2.19
    vp9_loop_filter_mix2_h_84_16_10bpp_neon : 1.89 2.20 1.47 2.29
    vp9_loop_filter_mix2_h_88_16_10bpp_neon : 1.69 2.12 1.47 2.08
    vp9_loop_filter_mix2_v_44_16_10bpp_neon : 3.16 3.98 2.50 4.05
    vp9_loop_filter_mix2_v_48_16_10bpp_neon : 2.84 3.64 2.25 3.77
    vp9_loop_filter_mix2_v_84_16_10bpp_neon : 2.65 3.45 2.16 3.54
    vp9_loop_filter_mix2_v_88_16_10bpp_neon : 2.55 3.30 2.16 3.55
    vp9_loop_filter_v_4_8_10bpp_neon : 2.85 3.97 2.24 3.68
    vp9_loop_filter_v_8_8_10bpp_neon : 2.27 3.19 1.96 3.08
    vp9_loop_filter_v_16_8_10bpp_neon : 3.42 2.74 2.26 4.40
    vp9_loop_filter_v_16_16_10bpp_neon : 2.86 2.44 1.93 3.88

    The speedup vs C code measured in checkasm is around 1.1-4x.
    These numbers are quite inconclusive though, since the checkasm test
    runs multiple filterings on top of each other, so later rounds might
    end up with different codepaths (different decisions on which filter
    to apply, based on input pixel differences).

    Based on START_TIMER/STOP_TIMER wrapping around a few individual
    functions, the speedup vs C code is around 2-4x.

    Signed-off-by : Martin Storsjö <martin@martin.st>

    • [DH] libavcodec/arm/Makefile
    • [DH] libavcodec/arm/vp9dsp_init_16bpp_arm_template.c
    • [DH] libavcodec/arm/vp9lpf_16bpp_neon.S