
Recherche avancée
Médias (91)
-
Spitfire Parade - Crisis
15 mai 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
Wired NextMusic
14 mai 2011, par
Mis à jour : Février 2012
Langue : English
Type : Video
-
Video d’abeille en portrait
14 mai 2011, par
Mis à jour : Février 2012
Langue : français
Type : Video
-
Sintel MP4 Surround 5.1 Full
13 mai 2011, par
Mis à jour : Février 2012
Langue : English
Type : Video
-
Carte de Schillerkiez
13 mai 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Texte
-
Publier une image simplement
13 avril 2011, par ,
Mis à jour : Février 2012
Langue : français
Type : Video
Autres articles (41)
-
Personnaliser les catégories
21 juin 2013, parFormulaire de création d’une catégorie
Pour ceux qui connaissent bien SPIP, une catégorie peut être assimilée à une rubrique.
Dans le cas d’un document de type catégorie, les champs proposés par défaut sont : Texte
On peut modifier ce formulaire dans la partie :
Administration > Configuration des masques de formulaire.
Dans le cas d’un document de type média, les champs non affichés par défaut sont : Descriptif rapide
Par ailleurs, c’est dans cette partie configuration qu’on peut indiquer le (...) -
Ajouter notes et légendes aux images
7 février 2011, parPour pouvoir ajouter notes et légendes aux images, la première étape est d’installer le plugin "Légendes".
Une fois le plugin activé, vous pouvez le configurer dans l’espace de configuration afin de modifier les droits de création / modification et de suppression des notes. Par défaut seuls les administrateurs du site peuvent ajouter des notes aux images.
Modification lors de l’ajout d’un média
Lors de l’ajout d’un média de type "image" un nouveau bouton apparait au dessus de la prévisualisation (...) -
MediaSPIP v0.2
21 juin 2013, parMediaSPIP 0.2 is the first MediaSPIP stable release.
Its official release date is June 21, 2013 and is announced here.
The zip file provided here only contains the sources of MediaSPIP in its standalone version.
To get a working installation, you must manually install all-software dependencies on the server.
If you want to use this archive for an installation in "farm mode", you will also need to proceed to other manual (...)
Sur d’autres sites (7398)
-
FFMPEG hardware acceleration in Windows Scheduled Task [closed]
25 mars 2022, par cfairerI'm setting up an unattended Windows 10 machine that will stream video from an RTSP nest cam feed using FFMPEG and Apache.
As it will be unattended and will lose power for six hours a day, I have created a Scheduled Task to run at boot without a user logged to run ffmpeg.


It all works fine with conventional encoders for task started automatically or manually by Windows Task Scheduler :
ffmpeg.exe -i rtsp ://user:pw@nestcam:554 -vf scale=1280:720 -vcodec libx264 -g 20 -r 10 -b:v 1120000 -crf 31 -map 0 -map -0:a -acodec aac -sc_threshold 0 -f hls -hls_time 2 -segment_time 2 -hls_flags delete_segments -hls_list_size 20 C :\webpages\video\stream.m3u8


It works fine when I use hardware acceleration too, but only outside Task Scheduler (e.g. a command prompt) :
ffmpeg.exe -init_hw_device qsv=hw -filter_hw_device hw -i rtsp ://user:pw@nestcam:554 -vf hwupload=extra_hw_frames=64,format=qsv -c:v h264_qsv -g 20 -r 10 -b:v 1120000 -crf 31 -map 0 -map -0:a -acodec aac -sc_threshold 0 -f hls -hls_time 2 -segment_time 2 -hls_flags delete_segments -hls_list_size 20 C :\webpages\video\stream.m3u8


The hardware accelerated version fails when executed by Windows Task Scheduler, whether started automatically or manually. The relevant output is as follows :
[AVHWDeviceContext @ 00000184ba5cc800] Failed to create Direct3D device
Device creation failed : -1313558101.
Failed to set value 'qsv=hw' for option 'init_hw_device' : Unknown error occurred
Error parsing global options : Unknown error occurred


Why can't the ffmpeg task started by Task Scheduler see the hardware-accelerated hardware ? Any ideas on how to resolve this ?


The hardware-accelerated version reduces the load on the CPU by about 75% (ie 50% down to 13%), so it's a significant benefit.


Thanks


-
imdct15 : remove the AArch64 assembly
4 janvier 2017, par Rostislav Pehlivanovimdct15 : remove the AArch64 assembly
Prep work for the next commit, which will add a new FFT algorithm
which makes the iMDCT over 3x faster than it is currently (standalone,
the FFT is with some framesizes over 10x faster).The new FFT algorithm uses the already thouroughly SIMD’d power of two
FFT which already has SIMD for AArch64, so users of that platform will
still see an improvement.The previous FFT+SIMD was barely 2.5x faster than the C versions on these
platforms.Signed-off-by : Rostislav Pehlivanov <atomnuker@gmail.com>
-
How to 'convert' MP3 file to numpy array or list
30 mai 2021, par Ajayi OlamideI'm working on an audio-related project that connects with Django backend via rest api. Part of the front-end requires to display waveforms of associated mp3 files and for this, it in turn requires optimized data of each mp3 file in form of an array, which the front-end (javascript) then processes and converts to a waveform. I can pick the associated mp3 file from backend storage, the problem is converting it into an array which I can serve to the front-end api. I have tried several methods but none seem to be working. I tried this How to read a MP3 audio file into a numpy array / save a numpy array to MP3 ? which leaves my computer hanging until I forced it to restart by holding the power button down. I have a working ffmpeg and so, I have also tried this Trying to convert an mp3 file to a Numpy Array, and ffmpeg just hangs which continues to raise TypeError on
np.fromstring(data[data.find("data")+4:], np.int16)
. I can't actually say what the problem is and I really hope someone can help. Thank you in advance !

EDIT
This is the django view for retrieving the waveform data :


NB : I've only included useful codes as I'm typing with my mobile phone.


def waveform(self, request, ptype, id):
 project = Project.objects.get(pk=id)
 audio = project.audio

 mp3_path = os.path.join(cdn_dir, audio) 
 cmd = ['ffmpeg', '-i', mp3_path, '-f', 'wav', '-']
 p = Popen(cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE, creationflags=0x8000000)
 data = p.communicate()[0]
 array = np.fromstring(data[data.find("data")+4:], np.int16)

 return Response(array)



The TypeError I get is this :

TypeError: argument should be integer or bytes-like object, not "str"