
Recherche avancée
Médias (1)
-
The Great Big Beautiful Tomorrow
28 octobre 2011, par
Mis à jour : Octobre 2011
Langue : English
Type : Texte
Autres articles (111)
-
Publier sur MédiaSpip
13 juin 2013Puis-je poster des contenus à partir d’une tablette Ipad ?
Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir -
Supporting all media types
13 avril 2011, parUnlike most software and media-sharing platforms, MediaSPIP aims to manage as many different media types as possible. The following are just a few examples from an ever-expanding list of supported formats : images : png, gif, jpg, bmp and more audio : MP3, Ogg, Wav and more video : AVI, MP4, OGV, mpg, mov, wmv and more text, code and other data : OpenOffice, Microsoft Office (Word, PowerPoint, Excel), web (html, CSS), LaTeX, Google Earth and (...)
-
Script d’installation automatique de MediaSPIP
25 avril 2011, parAfin de palier aux difficultés d’installation dues principalement aux dépendances logicielles coté serveur, un script d’installation "tout en un" en bash a été créé afin de faciliter cette étape sur un serveur doté d’une distribution Linux compatible.
Vous devez bénéficier d’un accès SSH à votre serveur et d’un compte "root" afin de l’utiliser, ce qui permettra d’installer les dépendances. Contactez votre hébergeur si vous ne disposez pas de cela.
La documentation de l’utilisation du script d’installation (...)
Sur d’autres sites (5785)
-
fate : Add a target for listing failed tests
7 novembre 2024, par Martin Storsjöfate : Add a target for listing failed tests
If running tests with "make -j<N> fate", the execution will stop
after the first failing test. To get an overview of the whole
test suite, one rather would run "make -k -j<N> fate", which then
again buries the results about what tests actually failed further
up in the console log.Add a target so one can run "make fate-list-failing", to see a list
of all tests that failed the last time they were executed.Also add a companion target "fate-clear-reports" which removes all
the old test reports. (When executing a subset of tests, the report
files of all tests that aren't executed stay untouched. This also
allows getting rid of reports for tests that no longer are present
in the testsuite.)Co-authored-by : Alexander Strasser <eclipse7@gmx.net>
Signed-off-by : Martin Storsjö <martin@martin.st>
-
Basic Video Palette Conversion
How do you take a 24-bit RGB image and convert it to an 8-bit paletted image for the purpose of compression using a codec that requires 8-bit input images ? Seems simple enough and that’s what I’m tackling in this post.
Ask FFmpeg/Libav To Do It
Ideally, FFmpeg / Libav should be able to handle this automatically. Indeed, FFmpeg used to be able to, at least at the time I wrote this post about ZMBV and was unhappy with FFmpeg’s default results. Somewhere along the line, FFmpeg and Libav lost the ability to do this. I suspect it got removed during some swscale refactoring.Still, there’s no telling if the old system would have computed palettes correctly for QuickTime files.
Distance Approach
When I started writing my SMC video encoder, I needed to convert RGB (from PNG files) to PAL8 colorspace. The path of least resistance was to match the pixels in the input image to the default 256-color palette that QuickTime assumes (and is hardcoded into FFmpeg/Libav).How to perform the matching ? Find the palette entry that is closest to a given input pixel, where "closest" is the minimum distance as computed by the usual distance formula (square root of the sum of the squares of the diffs of all the components).
That means for each pixel in an image, check the pixel against 256 palette entries (early termination is possible if an acceptable threshold is met). As you might imagine, this can be a bit time-consuming. I wondered about a faster approach...
Lookup Table
I think this is the approach that FFmpeg used to use, but I went and derived it for myself after studying the default QuickTime palette table. There’s a pattern there— all of the RGB entries are comprised of combinations of 6 values — 0x00, 0x33, 0x66, 0x99, 0xCC, and 0xFF. If you mix and match these for red, green, and blue values, you come up with6 * 6 * 6 = 216
different colors. This happens to be identical to the web-safe color palette.The first (0th) entry in the table is (FF, FF, FF), followed by (FF, FF, CC), (FF, FF, 99), and on down to (FF, FF, 00) when the green component gets knocked down and step and the next color is (FF, CC, FF). The first 36 palette entries in the table all have a red component of 0xFF. Thus, if an input RGB pixel has a red color closest to 0xFF, it must map to one of those first 36 entries.
I created a table which maps indices 0..215 to values from 5..0. Each of the R, G, and B components of an input pixel are used to index into this table and derive 3 indices ri, gi, and bi. Finally, the index into the palette table is given by :
index = ri * 36 + gi * 6 + bi
For example, the pixel (0xFE, 0xFE, 0x01) would yield ri, gi, and bi values of 0, 0, and 5. Therefore :
index = 0 * 36 + 0 * 6 + 5
The palette index is 5, which maps to color (0xFF, 0xFF, 0x00).
Validation
So I was pretty pleased with myself for coming up with that. Now, ideally, swapping out one algorithm for another in my SMC encoder should yield identical results. That wasn’t the case, initially.One problem is that the regulation QuickTime palette actually has 40 more entries above and beyond the typical 216-entry color cube (rounding out the grand total of 256 colors). Thus, using the distance approach with the full default table provides for a little more accuracy.
However, there still seems to be a problem. Let’s check our old standby, the Big Buck Bunny logo image :
Distance approach using the full 256-color QuickTime default palette
Distance approach using the 216-color palette
Table lookup approach using the 216-color palette
I can’t quite account for that big red splotch there. That’s the most notable difference between images 1 and 2 and the only visible difference between images 2 and 3.
To prove to myself that the distance approach is equivalent to the table approach, I wrote a Python script to iterate through all possible RGB combinations and verify the equivalence. If you’re not up on your base 2 math, that’s 224 or 16,777,216 colors to run through. I used Python’s multiprocessing module to great effect and really maximized a Core i7 CPU with 8 hardware threads.
So I’m confident that the palette conversion techniques are sound. The red spot is probably attributable to a bug in my WIP SMC encoder.
Source Code
Update August 23, 2011 : Here’s the Python code I used for proving equivalence between the 2 approaches. In terms of leveraging multiple CPUs, it’s possibly the best program I have written to date.PYTHON :-
# !/usr/bin/python
-
-
from multiprocessing import Pool
-
-
palette = []
-
pal8_table = []
-
-
def process_r(r) :
-
counts = []
-
-
for i in xrange(216) :
-
counts.append(0)
-
-
print "r = %d" % (r)
-
for g in xrange(256) :
-
for b in xrange(256) :
-
min_dsqrd = 0xFFFFFFFF
-
best_index = 0
-
for i in xrange(len(palette)) :
-
dr = palette[i][0] - r
-
dg = palette[i][1] - g
-
db = palette[i][2] - b
-
dsqrd = dr * dr + dg * dg + db * db
-
if dsqrd <min_dsqrd :
-
min_dsqrd = dsqrd
-
best_index = i
-
counts[best_index] += 1
-
-
# check if the distance approach deviates from the table-based approach
-
i = best_index
-
r = palette[i][0]
-
g = palette[i][1]
-
b = palette[i][2]
-
ri = pal8_table[r]
-
gi = pal8_table[g]
-
bi = pal8_table[b]
-
table_index = ri * 36 + gi * 6 + bi ;
-
if table_index != best_index :
-
print "(0x%02X 0x%02X 0x%02X) : distance index = %d, table index = %d" % (r, g, b, best_index, table_index)
-
-
return counts
-
-
if __name__ == ’__main__’ :
-
counts = []
-
for i in xrange(216) :
-
counts.append(0)
-
-
# initialize reference palette
-
color_steps = [ 0xFF, 0xCC, 0x99, 0x66, 0x33, 0x00 ]
-
for r in color_steps :
-
for g in color_steps :
-
for b in color_steps :
-
palette.append([r, g, b])
-
-
# initialize palette conversion table
-
for i in range(0, 26) :
-
pal8_table.append(5)
-
for i in range(26, 77) :
-
pal8_table.append(4)
-
for i in range(77, 128) :
-
pal8_table.append(3)
-
for i in range(128, 179) :
-
pal8_table.append(2)
-
for i in range(179, 230) :
-
pal8_table.append(1)
-
for i in range(230, 256) :
-
pal8_table.append(0)
-
-
# create a pool of worker threads and break up the overall job
-
pool = Pool()
-
it = pool.imap_unordered(process_r, range(256))
-
try :
-
while 1 :
-
partial_counts = it.next()
-
for i in xrange(216) :
-
counts[i] += partial_counts[i]
-
except StopIteration :
-
pass
-
-
print "index, count, red, green, blue"
-
for i in xrange(len(counts)) :
-
print "%d, %d, %d, %d, %d" % (i, counts[i], palette[i][0], palette[i][1], palette[i][2])
-
-
compiling ffmpeg 2.3 for android with NDK r10 on windows [duplicate]
25 août 2014, par L.GrilloThis question already has an answer here :
After a week i’m trying to compile ffmpeg for android.
I can’t find a static build in the entire web exept for https://github.com/guardianproject/android-ffmpeg-java/tree/master/res/raw but is 0.11 version one.This is my build.sh
#!/usr/bin/env bash
NDK=C:/Android/android-ndk-r10
SYSROOT=$NDK/platforms/android-18/arch-arm/
TOOLCHAIN=$NDK/toolchains/arm-linux-androideabi-4.8/prebuilt/windows-x86_64
function build_one
{
./configure \
--arch=arm \
--target-os=linux \
--enable-runtime-cpudetect \
--enable-pic \
--disable-shared \
--enable-static \
--extra-cflags='-march=armv6' \
--extra-ldflags="$ADDI_LDFLAGS" \
--enable-ffmpeg \
--disable-ffplay \
--disable-ffprobe \
--disable-ffserver\
--disable-network \
--enable-cross-compile \
--cross-prefix=$TOOLCHAIN/bin/arm-linux-androideabi- \
--sysroot=$SYSROOT \
$ADDITIONAL_CONFIGURE_FLAG
make clean
make -j4
make install
}
CPU=arm
PREFIX=$(pwd)/android/$CPU
ADDI_CFLAGS="-marm"
build_oneIt seems everything works good except the compilation stopped after 4 files :
It seems to stay here forever. After 4 hours nothing is moving.
the process "make.exe (32 bit)" is running with 18% of cpuAny help will be precious.
Thank u