
Recherche avancée
Médias (3)
-
MediaSPIP Simple : futur thème graphique par défaut ?
26 septembre 2013, par
Mis à jour : Octobre 2013
Langue : français
Type : Video
-
GetID3 - Bloc informations de fichiers
9 avril 2013, par
Mis à jour : Mai 2013
Langue : français
Type : Image
-
GetID3 - Boutons supplémentaires
9 avril 2013, par
Mis à jour : Avril 2013
Langue : français
Type : Image
Autres articles (13)
-
Amélioration de la version de base
13 septembre 2013Jolie sélection multiple
Le plugin Chosen permet d’améliorer l’ergonomie des champs de sélection multiple. Voir les deux images suivantes pour comparer.
Il suffit pour cela d’activer le plugin Chosen (Configuration générale du site > Gestion des plugins), puis de configurer le plugin (Les squelettes > Chosen) en activant l’utilisation de Chosen dans le site public et en spécifiant les éléments de formulaires à améliorer, par exemple select[multiple] pour les listes à sélection multiple (...) -
Selection of projects using MediaSPIP
2 mai 2011, parThe examples below are representative elements of MediaSPIP specific uses for specific projects.
MediaSPIP farm @ Infini
The non profit organizationInfini develops hospitality activities, internet access point, training, realizing innovative projects in the field of information and communication technologies and Communication, and hosting of websites. It plays a unique and prominent role in the Brest (France) area, at the national level, among the half-dozen such association. Its members (...) -
Monitoring de fermes de MediaSPIP (et de SPIP tant qu’à faire)
31 mai 2013, parLorsque l’on gère plusieurs (voir plusieurs dizaines) de MediaSPIP sur la même installation, il peut être très pratique d’obtenir d’un coup d’oeil certaines informations.
Cet article a pour but de documenter les scripts de monitoring Munin développés avec l’aide d’Infini.
Ces scripts sont installés automatiquement par le script d’installation automatique si une installation de munin est détectée.
Description des scripts
Trois scripts Munin ont été développés :
1. mediaspip_medias
Un script de (...)
Sur d’autres sites (3553)
-
Remove flicker, crop and upscale in ffmpeg
22 août 2024, par SabhaI spent one full day on
ffmpeg
line commands by searching a lot on google but could not achieve what I wanted to and therefore I came here to seek some advice.
I have a videotestinput.mpg
which I believe is ampeg-2
video. It is of720x576
dimensions having25 fps
and a total bitrate of4224 kbps


First problem is that the exported footage is flickering which I wasn't able to remove using ffmpeg with lots of commands I tried like adjusting brightness, contrast, hue, saturation and all.


Second problem was to extract the center portion which I was able to do it with the crop feature using following command.


ffmpeg -i testinput.mpg -filter:v "crop=468:374" testoutput.mpg



But after cropping I observed that that bitrate fell from
4224 kbps
to761 kbps
and I assume this has reduced the quality of video.

What I want to achieve is :


- 

- Crop the video properly keeping the same quality (
acodec copy
vcodec copy
) -> ffmpeg did not allow me to do both the things together (cropping and having same codec) - Remove the flicker from video and upscale it to 4K or HD quality so that it looks nice on big televison (preferably 4K)






I request some help on how to achieve the desired result. Can someone shed some light on it ?


Here are 10 seconds sample videos on google drive that I am working on






Thanks


- Crop the video properly keeping the same quality (
-
Subtitling Sierra RBT Files
2 juin 2016, par Multimedia Mike — Game HackingThis is part 2 of the adventure started in my Subtitling Sierra VMD Files post. After I completed the VMD subtitling, The Translator discovered a wealth of animation files in a format called RBT (this apparently stands for “Robot” but I think “Ribbit” format could be more fun). What are we going to do ? We had come so far by solving the VMD subtitling problem for Phantasmagoria. It would be a shame if the effort ground to a halt due to this.
Fortunately, the folks behind the ScummVM project already figured out enough of the format to be able to decode the RBT files in Phantasmagoria.
In the end, I was successful in creating a completely standalone tool that can take a Robot file and a subtitle file and create a new Robot file with subtitles. The source code is here (subtitle-rbt.c). Here’s what the final result looks like :
“What’s in the refrigerator ?” I should note at this juncture that I am not sure if this particular Robot file even has sound or dialogue since I was conducting these experiments on a computer with non-working audio.
The RBT Format
I have created a new MultimediaWiki page describing the Robot Animation format based on the ScummVM source code. I have not worked with a format quite like this before. These are paletted animations which consist of a sequence of independent frames that are designed to be overlaid on top of static background. Because of these characteristics, each frame encodes its own unique dimensions and origin coordinate within the frame. While the Phantasmagoria VMD files are usually 288×144 (which are usually double-sized for the benefit of a 640×400 Super VGA canvas), these frames are meant to be plotted on a game field that was roughly 576×288 (288×144 doublesized).
For example, 2 minimalist animation frames from a desk investigation Robot file :
100×147
101×149As for compression, my first impression was that the algorithm was the same as VMD. This is wrong. It evidently uses an unmodified version of a standard algorithm called Lempel-Ziv-Stac (LZS). It shows up in several RFCs and was apparently used in MS-DOS’s transparent disk compression scheme.
Approach
Thankfully, many of the lessons I learned from the previous project are applicable to this project, including : subtitle library interfacing, subtitling in the paletted colorspace, and replacing encoded frames from the original file instead of trying to create a new file.Here is the pitch for this project :
- Create a C program that can traverse through an input file, piece by piece, and generate an output file. The result of this should be a bitwise identical file.
- Adapt the LZS compression decoding algorithm from ScummVM into the new tool. Make the tool dump raw Portable NetMap (PNM) files of varying dimensions and ensure that they look correct.
- Compress using LZS.
- Stretch the frames and draw subtitles.
- More compression. Find the minimum window for each frame.
Compression
Normally, my first goal is to decompress the video and store the data in a raw form. However, this turned out to be mathematically intractable. While the format does support both compressed and uncompressed frames (even though ScummVM indicates that the uncompressed path is yet unexercised), the goal of this project requires making the frames so large that they overflow certain parameters of the file.A Robot file has a sequence of frames and 2 tables describing the size of each frame. One table describes the entire frame size (audio + video) while the second table describes just the video frame size. Since these tables only use 16 bits to specify a size, the maximum frame size is 65536 bytes. Leaving space for the audio portion of the frame, this only leaves a per-frame byte budget of about 63000 bytes for the video. Expanding the frame to 576×288 (165,888 pixels) would overflow this limit.
Anyway, the upshot is that I needed to compress the data up front.
Fortunately, the LZS compressor is pretty straightforward, at least if you have experience writing VLC-oriented codecs. While the algorithm revolves around back references, my approach was to essentially write an RLE encoder. My compressor would search for runs of data (plentiful when I started to stretch the frame for subtitling purposes). When a run length of n=3 or more of the same pixel is found, encode the pixel by itself, and then store a back reference of offset -1 and length (n-1). It took a little while to iron out a few problems, but I eventually got it to work perfectly.
I have to say, however, that the format is a little bit weird in how it codes very large numbers. The length encoding is somewhat Golomb-like, i.e., smaller values are encoded with fewer bits. However, when it gets to large numbers, it starts encoding counts of 15 as blocks of 1111. For example, 24 is bigger than 7. Thus, emit 1111 into the bitstream and subtract 8 from 23 -> 16. Still bigger than 15, so stuff another 1111 into the bitstream and subtract 15. Now we’re at 1, so stuff 0001. So 24 is 11111111 0001. 12 bits is not too horrible. But the total number of bytes (value / 30). So a value of 300 takes around 10 bytes (80 bits) to encode.
Palette Slices
As in the VMD subtitling project, I took the subtitle color offered in the subtitle spec file as a suggestion and used Euclidean distance to match to the closest available color in the palette. One problem, however, is that the palette is a lot smaller in these animations. According to my notes, for the set of animations I scanned, only about 80 colors were specified, starting at palette index 55. I hypothesize that different slices of the palette are reserved for different uses. E.g., animation, background, and user interface. Thus, there is a smaller number of colors to draw upon for subtitling purposes.Scaling
One bit of residual weirdness in this format is the presence of a per-frame scale factor. While most frames set this to 100 (100% scale), I have observed 70%, 80%, and 90%. ScummVM is a bit unsure about how to handle these, so I am as well. However, I eventually realized I didn’t really need to care, at least not when decoding and re-encoding the frame. Just preserve the scale factor. I intend to modify the tool further to take scale factor into account when creating the subtitle.The Final Resolution
Right around the time that I was composing this post, The Translator emailed me and notified me that he had found a better way to subtitle the Robot files by modifying the scripts, rendering my entire approach moot. The result is much cleaner :
Turns out that the engine supported subtitles all along
It’s a good thing that I enjoyed the challenge or I might be annoyed at this point.
See Also
- Subtitling Sierra VMD Files : My effort to subtitle the main FMV files found in Sierra games.
The post Subtitling Sierra RBT Files first appeared on Breaking Eggs And Making Omelettes.
-
Improve ffmpeg scene detection in particular scenario
17 septembre 2021, par Nobody-Knows-I-am-a-DogI have 50 hours of video where a speaker is in the lower right corner of the video and the by far larger part of the video consists of slides in the center. The speaker moves a bit, the slides transition into the video. I need to detect the time codes of the slide transitions. +- 1 second precision is fine. I am playing around with select filters in ffmpeg such as
ffmpeg -i lecture.mp4 -filter:v "select='gt(scene,0.1)',showinfo" -f null -
but I have remaining problems where some help or hint would be highly appreciated.

Problem 1 : Speaker movement occasionally triggers false positives. If there is some possibility to restrict frame comparison to a certain (spatial, cropped) area of the scene then I could focus on the slide area and this would greatly help.


Problem 2 : Speed of slide transition is slow so I occasionally miss a transition since the change from frame(n) to frame(n+1) is too small. It would be great if I could compare, for example, frame(n) to frame(n+10) for threshold detection. ffmpeg scene detection : check only every nth frame ? does not help here, because it only checks every n-th frame but still compares a frame with its immediate neighbor.


Of course, both problems can be solved by producing a cropped version with reduced framerate. However, I am looking for a solution where I can do this in a single pass with some complex filter expression ... and this is exactly the place where my own experience with ffmpeg fails me and where I would appreciate some help.


Problem 3 : Occasionally a single slide transition triggers several times in a row throughout the transition. I have no idea how to solve this in ffmpeg.