Recherche avancée

Médias (1)

Mot : - Tags -/portrait

Autres articles (66)

  • Websites made ​​with MediaSPIP

    2 mai 2011, par

    This page lists some websites based on MediaSPIP.

  • Possibilité de déploiement en ferme

    12 avril 2011, par

    MediaSPIP peut être installé comme une ferme, avec un seul "noyau" hébergé sur un serveur dédié et utilisé par une multitude de sites différents.
    Cela permet, par exemple : de pouvoir partager les frais de mise en œuvre entre plusieurs projets / individus ; de pouvoir déployer rapidement une multitude de sites uniques ; d’éviter d’avoir à mettre l’ensemble des créations dans un fourre-tout numérique comme c’est le cas pour les grandes plate-formes tout public disséminées sur le (...)

  • Ajouter des informations spécifiques aux utilisateurs et autres modifications de comportement liées aux auteurs

    12 avril 2011, par

    La manière la plus simple d’ajouter des informations aux auteurs est d’installer le plugin Inscription3. Il permet également de modifier certains comportements liés aux utilisateurs (référez-vous à sa documentation pour plus d’informations).
    Il est également possible d’ajouter des champs aux auteurs en installant les plugins champs extras 2 et Interface pour champs extras.

Sur d’autres sites (11853)

  • avconv : Use the mpeg12 private option scan_offset

    14 décembre 2014, par Julien Ramseier
    avconv : Use the mpeg12 private option scan_offset
    

    Introduced in aed790070486b1b01b48106310d9d0ca1730e459

    Bug-Id : debian/773055
    CC : libav-stable@libav.org
    Signed-off-by : Luca Barbato <lu_zero@gentoo.org>
    Signed-off-by : Anton Khirnov <anton@khirnov.net>

    • [DBH] avconv_opt.c
  • avformat/mpegenc : check for stream private data during deinit

    19 octobre 2019, par James Almer
    avformat/mpegenc : check for stream private data during deinit
    

    Prevents pointer dereferences when streams were not fully initialized.

    Signed-off-by : James Almer <jamrial@gmail.com>

    • [DH] libavformat/mpegenc.c
  • Basic Video Palette Conversion

    20 août 2011, par Multimedia Mike — General, Python

    How do you take a 24-bit RGB image and convert it to an 8-bit paletted image for the purpose of compression using a codec that requires 8-bit input images ? Seems simple enough and that’s what I’m tackling in this post.

    Ask FFmpeg/Libav To Do It
    Ideally, FFmpeg / Libav should be able to handle this automatically. Indeed, FFmpeg used to be able to, at least at the time I wrote this post about ZMBV and was unhappy with FFmpeg’s default results. Somewhere along the line, FFmpeg and Libav lost the ability to do this. I suspect it got removed during some swscale refactoring.

    Still, there’s no telling if the old system would have computed palettes correctly for QuickTime files.

    Distance Approach
    When I started writing my SMC video encoder, I needed to convert RGB (from PNG files) to PAL8 colorspace. The path of least resistance was to match the pixels in the input image to the default 256-color palette that QuickTime assumes (and is hardcoded into FFmpeg/Libav).

    How to perform the matching ? Find the palette entry that is closest to a given input pixel, where "closest" is the minimum distance as computed by the usual distance formula (square root of the sum of the squares of the diffs of all the components).



    That means for each pixel in an image, check the pixel against 256 palette entries (early termination is possible if an acceptable threshold is met). As you might imagine, this can be a bit time-consuming. I wondered about a faster approach...

    Lookup Table
    I think this is the approach that FFmpeg used to use, but I went and derived it for myself after studying the default QuickTime palette table. There’s a pattern there— all of the RGB entries are comprised of combinations of 6 values — 0x00, 0x33, 0x66, 0x99, 0xCC, and 0xFF. If you mix and match these for red, green, and blue values, you come up with 6 * 6 * 6 = 216 different colors. This happens to be identical to the web-safe color palette.

    The first (0th) entry in the table is (FF, FF, FF), followed by (FF, FF, CC), (FF, FF, 99), and on down to (FF, FF, 00) when the green component gets knocked down and step and the next color is (FF, CC, FF). The first 36 palette entries in the table all have a red component of 0xFF. Thus, if an input RGB pixel has a red color closest to 0xFF, it must map to one of those first 36 entries.

    I created a table which maps indices 0..215 to values from 5..0. Each of the R, G, and B components of an input pixel are used to index into this table and derive 3 indices ri, gi, and bi. Finally, the index into the palette table is given by :

      index = ri * 36 + gi * 6 + bi
    

    For example, the pixel (0xFE, 0xFE, 0x01) would yield ri, gi, and bi values of 0, 0, and 5. Therefore :

      index = 0 * 36 + 0 * 6 + 5
    

    The palette index is 5, which maps to color (0xFF, 0xFF, 0x00).

    Validation
    So I was pretty pleased with myself for coming up with that. Now, ideally, swapping out one algorithm for another in my SMC encoder should yield identical results. That wasn’t the case, initially.

    One problem is that the regulation QuickTime palette actually has 40 more entries above and beyond the typical 216-entry color cube (rounding out the grand total of 256 colors). Thus, using the distance approach with the full default table provides for a little more accuracy.

    However, there still seems to be a problem. Let’s check our old standby, the Big Buck Bunny logo image :



    Distance approach using the full 256-color QuickTime default palette


    Distance approach using the 216-color palette


    Table lookup approach using the 216-color palette

    I can’t quite account for that big red splotch there. That’s the most notable difference between images 1 and 2 and the only visible difference between images 2 and 3.

    To prove to myself that the distance approach is equivalent to the table approach, I wrote a Python script to iterate through all possible RGB combinations and verify the equivalence. If you’re not up on your base 2 math, that’s 224 or 16,777,216 colors to run through. I used Python’s multiprocessing module to great effect and really maximized a Core i7 CPU with 8 hardware threads.

    So I’m confident that the palette conversion techniques are sound. The red spot is probably attributable to a bug in my WIP SMC encoder.

    Source Code
    Update August 23, 2011 : Here’s the Python code I used for proving equivalence between the 2 approaches. In terms of leveraging multiple CPUs, it’s possibly the best program I have written to date.

    PYTHON :
    1. # !/usr/bin/python
    2.  
    3. from multiprocessing import Pool
    4.  
    5. palette = []
    6. pal8_table = []
    7.  
    8. def process_r(r) :
    9.  counts = []
    10.  
    11.  for i in xrange(216) :
    12.   counts.append(0)
    13.  
    14.  print "r = %d" % (r)
    15.  for g in xrange(256) :
    16.   for b in xrange(256) :
    17.    min_dsqrd = 0xFFFFFFFF
    18.    best_index = 0
    19.    for i in xrange(len(palette)) :
    20.     dr = palette[i][0] - r
    21.     dg = palette[i][1] - g
    22.     db = palette[i][2] - b
    23.     dsqrd = dr * dr + dg * dg + db * db
    24.     if dsqrd <min_dsqrd :
    25.      min_dsqrd = dsqrd
    26.      best_index = i
    27.    counts[best_index] += 1
    28.  
    29.    # check if the distance approach deviates from the table-based approach
    30.    i = best_index
    31.    r = palette[i][0]
    32.    g = palette[i][1]
    33.    b = palette[i][2]
    34.    ri = pal8_table[r]
    35.    gi = pal8_table[g]
    36.    bi = pal8_table[b]
    37.    table_index = ri * 36 + gi * 6 + bi ;
    38.    if table_index != best_index :
    39.     print "(0x%02X 0x%02X 0x%02X) : distance index = %d, table index = %d" % (r, g, b, best_index, table_index)
    40.  
    41.  return counts
    42.  
    43. if __name__ == ’__main__’ :
    44.  counts = []
    45.  for i in xrange(216) :
    46.   counts.append(0)
    47.  
    48.  # initialize reference palette
    49.  color_steps = [ 0xFF, 0xCC, 0x99, 0x66, 0x33, 0x00 ]
    50.  for r in color_steps :
    51.   for g in color_steps :
    52.    for b in color_steps :
    53.     palette.append([r, g, b])
    54.  
    55.  # initialize palette conversion table
    56.  for i in range(0, 26) :
    57.   pal8_table.append(5)
    58.  for i in range(26, 77) :
    59.   pal8_table.append(4)
    60.  for i in range(77, 128) :
    61.   pal8_table.append(3)
    62.  for i in range(128, 179) :
    63.   pal8_table.append(2)
    64.  for i in range(179, 230) :
    65.   pal8_table.append(1)
    66.  for i in range(230, 256) :
    67.   pal8_table.append(0)
    68.  
    69.  # create a pool of worker threads and break up the overall job
    70.  pool = Pool()
    71.  it = pool.imap_unordered(process_r, range(256))
    72.  try :
    73.   while 1 :
    74.    partial_counts = it.next()
    75.    for i in xrange(216) :
    76.     counts[i] += partial_counts[i]
    77.  except StopIteration :
    78.   pass
    79.  
    80.  print "index, count, red, green, blue"
    81.  for i in xrange(len(counts)) :
    82.   print "%d, %d, %d, %d, %d" % (i, counts[i], palette[i][0], palette[i][1], palette[i][2])