
Recherche avancée
Médias (1)
-
The Slip - Artworks
26 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Texte
Autres articles (111)
-
La sauvegarde automatique de canaux SPIP
1er avril 2010, parDans le cadre de la mise en place d’une plateforme ouverte, il est important pour les hébergeurs de pouvoir disposer de sauvegardes assez régulières pour parer à tout problème éventuel.
Pour réaliser cette tâche on se base sur deux plugins SPIP : Saveauto qui permet une sauvegarde régulière de la base de donnée sous la forme d’un dump mysql (utilisable dans phpmyadmin) mes_fichiers_2 qui permet de réaliser une archive au format zip des données importantes du site (les documents, les éléments (...) -
Publier sur MédiaSpip
13 juin 2013Puis-je poster des contenus à partir d’une tablette Ipad ?
Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir -
Supporting all media types
13 avril 2011, parUnlike most software and media-sharing platforms, MediaSPIP aims to manage as many different media types as possible. The following are just a few examples from an ever-expanding list of supported formats : images : png, gif, jpg, bmp and more audio : MP3, Ogg, Wav and more video : AVI, MP4, OGV, mpg, mov, wmv and more text, code and other data : OpenOffice, Microsoft Office (Word, PowerPoint, Excel), web (html, CSS), LaTeX, Google Earth and (...)
Sur d’autres sites (6875)
-
ARM inline asm secrets
Although I generally recommend against using GCC inline assembly, preferring instead pure assembly code in separate files, there are occasions where inline is the appropriate solution. Should one, at a time like this, turn to the GCC documentation for guidance, one must be prepared for a degree of disappointment. As it happens, much of the inline asm syntax is left entirely undocumented. This article attempts to fill in some of the blanks for the ARM target.
Constraints
Each operand of an inline asm block is described by a constraint string encoding the valid representations of the operand in the generated assembly. For example the “r” code denotes a general-purpose register. In addition to the standard constraints, ARM allows a number of special codes, only some of which are documented. The full list, including a brief description, is available in the constraints.md file in the GCC source tree. The following table is an extract from this file consisting of the codes which are meaningful in an inline asm block (a few are only useful in the machine description itself).
f Legacy FPA registers f0-f7. t The VFP registers s0-s31. v The Cirrus Maverick co-processor registers. w The VFP registers d0-d15, or d0-d31 for VFPv3. x The VFP registers d0-d7. y The Intel iWMMX co-processor registers. z The Intel iWMMX GR registers. l In Thumb state the core registers r0-r7. h In Thumb state the core registers r8-r15. j A constant suitable for a MOVW instruction. (ARM/Thumb-2) b Thumb only. The union of the low registers and the stack register. I In ARM/Thumb-2 state a constant that can be used as an immediate value in a Data Processing instruction. In Thumb-1 state a constant in the range 0 to 255. J In ARM/Thumb-2 state a constant in the range -4095 to 4095. In Thumb-1 state a constant in the range -255 to -1. K In ARM/Thumb-2 state a constant that satisfies the I constraint if inverted. In Thumb-1 state a constant that satisfies the I constraint multiplied by any power of 2. L In ARM/Thumb-2 state a constant that satisfies the I constraint if negated. In Thumb-1 state a constant in the range -7 to 7. M In Thumb-1 state a constant that is a multiple of 4 in the range 0 to 1020. N Thumb-1 state a constant in the range 0 to 31. O In Thumb-1 state a constant that is a multiple of 4 in the range -508 to 508. Pa In Thumb-1 state a constant in the range -510 to +510 Pb In Thumb-1 state a constant in the range -262 to +262 Ps In Thumb-2 state a constant in the range -255 to +255 Pt In Thumb-2 state a constant in the range -7 to +7 G In ARM/Thumb-2 state a valid FPA immediate constant. H In ARM/Thumb-2 state a valid FPA immediate constant when negated. Da In ARM/Thumb-2 state a const_int, const_double or const_vector that can be generated with two Data Processing insns. Db In ARM/Thumb-2 state a const_int, const_double or const_vector that can be generated with three Data Processing insns. Dc In ARM/Thumb-2 state a const_int, const_double or const_vector that can be generated with four Data Processing insns. This pattern is disabled if optimizing for space or when we have load-delay slots to fill. Dn In ARM/Thumb-2 state a const_vector which can be loaded with a Neon vmov immediate instruction. Dl In ARM/Thumb-2 state a const_vector which can be used with a Neon vorr or vbic instruction. DL In ARM/Thumb-2 state a const_vector which can be used with a Neon vorn or vand instruction. Dv In ARM/Thumb-2 state a const_double which can be used with a VFP fconsts instruction. Dy In ARM/Thumb-2 state a const_double which can be used with a VFP fconstd instruction. Ut In ARM/Thumb-2 state an address valid for loading/storing opaque structure types wider than TImode. Uv In ARM/Thumb-2 state a valid VFP load/store address. Uy In ARM/Thumb-2 state a valid iWMMX load/store address. Un In ARM/Thumb-2 state a valid address for Neon doubleword vector load/store instructions. Um In ARM/Thumb-2 state a valid address for Neon element and structure load/store instructions. Us In ARM/Thumb-2 state a valid address for non-offset loads/stores of quad-word values in four ARM registers. Uq In ARM state an address valid in ldrsb instructions. Q In ARM/Thumb-2 state an address that is a single base register. Operand codes
Within the text of an inline asm block, operands are referenced as %0, %1 etc. Register operands are printed as rN, memory operands as [rN, #offset], and so forth. In some situations, for example with operands occupying multiple registers, more detailed control of the output may be required, and once again, an undocumented feature comes to our rescue.
Special code letters inserted between the % and the operand number alter the output from the default for each type of operand. The table below lists the more useful ones.
c An integer or symbol address without a preceding # sign B Bitwise inverse of integer or symbol without a preceding # L The low 16 bits of an immediate constant m The base register of a memory operand M A register range suitable for LDM/STM H The highest-numbered register of a pair Q The least significant register of a pair R The most significant register of a pair P A double-precision VFP register p The high single-precision register of a VFP double-precision register q A NEON quad register e The low doubleword register of a NEON quad register f The high doubleword register of a NEON quad register h A range of VFP/NEON registers suitable for VLD1/VST1 A A memory operand for a VLD1/VST1 instruction y S register as indexed D register, e.g. s5 becomes d2[1] -
vp9/x86 : idct_add_16x16_ssse3.
14 décembre 2013, par Ronald S. Bultjevp9/x86 : idct_add_16x16_ssse3.
Currently only dc-only and full 16x16. Other subforms will follow in the
near future. Total decoding time of ped1080p.webm goes from 9.7 to 9.3
seconds. DC-only goes from 957 -> 131 cycles, and the full IDCT goes
from 4050 to 745 cycles. -
Encoding 4K 60Hz lossless from a capture card
13 décembre 2017, par Alex PizziWindows 10 64-bit
Ryzen 7
GTX 1080
32GB RAMHi all,
I’m trying to encode 4K 30/60Hz video in a lossless format from a 4K capture card and everything I’ve tried gives me a similar error as in the linked image, [real-time buffer too full or near too full frame dropped]
[Not mine]
https://cloud.githubusercontent.com/assets/4932401/22171307/ef5c9864-df58-11e6-8821-4b74ce3f32d0.pngThis is the command I’ve tried most recently :
ffmpeg.exe -f dshow -video_size 3840x2160 -framerate 30 -pixel_format bgr24 -rtbufsize INT_MAX -i video="MZ0380 PCI, Analog 01 Capture" -vf fps=30 out%d.BMP
With the images dumped to a 10G RAM disk or 850 EVO. I’m doing this to skip the encoding step.
I get the same error when encoding with h265 lossless and NVENC h265 lossless.
I need the video to be lossless as it will be used to test hardware h265 encoders.
Video source is a 4K Blu-ray.
Any help would be greatly appreciated. Thank you.
-Alex P