
Recherche avancée
Médias (3)
-
Valkaama DVD Cover Outside
4 octobre 2011, par
Mis à jour : Octobre 2011
Langue : English
Type : Image
-
Valkaama DVD Label
4 octobre 2011, par
Mis à jour : Février 2013
Langue : English
Type : Image
-
Valkaama DVD Cover Inside
4 octobre 2011, par
Mis à jour : Octobre 2011
Langue : English
Type : Image
Autres articles (111)
-
Script d’installation automatique de MediaSPIP
25 avril 2011, parAfin de palier aux difficultés d’installation dues principalement aux dépendances logicielles coté serveur, un script d’installation "tout en un" en bash a été créé afin de faciliter cette étape sur un serveur doté d’une distribution Linux compatible.
Vous devez bénéficier d’un accès SSH à votre serveur et d’un compte "root" afin de l’utiliser, ce qui permettra d’installer les dépendances. Contactez votre hébergeur si vous ne disposez pas de cela.
La documentation de l’utilisation du script d’installation (...) -
Supporting all media types
13 avril 2011, parUnlike most software and media-sharing platforms, MediaSPIP aims to manage as many different media types as possible. The following are just a few examples from an ever-expanding list of supported formats : images : png, gif, jpg, bmp and more audio : MP3, Ogg, Wav and more video : AVI, MP4, OGV, mpg, mov, wmv and more text, code and other data : OpenOffice, Microsoft Office (Word, PowerPoint, Excel), web (html, CSS), LaTeX, Google Earth and (...)
-
Les notifications de la ferme
1er décembre 2010, parAfin d’assurer une gestion correcte de la ferme, il est nécessaire de notifier plusieurs choses lors d’actions spécifiques à la fois à l’utilisateur mais également à l’ensemble des administrateurs de la ferme.
Les notifications de changement de statut
Lors d’un changement de statut d’une instance, l’ensemble des administrateurs de la ferme doivent être notifiés de cette modification ainsi que l’utilisateur administrateur de l’instance.
À la demande d’un canal
Passage au statut "publie"
Passage au (...)
Sur d’autres sites (7526)
-
FFMPEG - force webm clusters duration [closed]
1er avril 2021, par Vlad Sineokin short, i'm modifying a game that uses a VP8 video format.
the original videos are at 25 fps and have all clusters of nice and perfect duration 0.96 seconds and contain 25 blocks each (except for that last cluster, which usually varies). also every cluster starts with a keyframe. (all that information i gathered using webm_info from google's libwebm repo)


unless all of the requirements are met, the game struggles to play the webm file smoothly, so my own webm files stutter most of the time, because ffmpeg fails to create the correct clusters and mkclean doesn't help either.
so my question is : how would i force ffmpeg to make all clusters have that perfect duration ?
here's what my command currently looks like


for %%f in (*.webm) do (
ffmpeg -y -i %%f -vcodec libvpx -cpu-used 1 -pass 1 -reserve_index_space 16384 -fflags +genpts -crf 15 -slices 8 -g 25 -keyint_min 25 -vprofile 1 -auto-alt-ref 1 -arnr-maxframes 5 -arnr-strength 3 -deadline good -vf scale=512:384,setsar=1:1 -vb 4000k -an -r 25 -movflags use_metadata_tags -f webm NUL && ^
ffmpeg -y -i %%f -vcodec libvpx -cpu-used 1 -pass 2 -reserve_index_space 16384 -fflags +genpts -crf 15 -slices 8 -g 25 -keyint_min 25 -vprofile 1 -auto-alt-ref 1 -arnr-maxframes 5 -arnr-strength 3 -deadline good -vf scale=512:384,setsar=1:1 -vb 4000k -an -r 25 -movflags use_metadata_tags -f webm %%~nf.webm
)



-
SNES Hardware Compression
16 juin 2011, par Multimedia Mike — Game HackingI was browsing the source code for some Super Nintendo Entertainment System (SNES) emulators recently. I learned some interesting things about compression hardware. I had previously uncovered one compression algorithm used in an SNES title but that was implemented in software.
SNES game cartridges — being all hardware — were at liberty to expand the hardware capabilities of the base system by adding new processors. The most well-known of these processors was the Super FX which allows for basic polygon graphical rendering, powering such games as Star Fox. It was by no means the only such add-on processor, though. Here is a Wikipedia page of all the enhancement chips used in assorted SNES games. A number of them mention compression and so I delved into the emulators to find the details :
- The Super FX is listed in Wikipedia vaguely as being able to decompress graphics. I see no reference to decompression in emulator source code.
- DSP-3 emulation source code makes reference to LZ-type compression as well as tree/symbol decoding. I’m not sure if the latter is a component of the former. Wikipedia lists the chip as supporting "Shannon-Fano bitstream decompression."
- Similar to Super FX, the SA-1 chip is listed in Wikipedia as having some compression capabilities. Again, either that’s not true or none of the games that use the chip (notably Super Mario RPG) make use of the feature.
- The S-DD1 chip uses arithmetic and Golomb encoding for compressing graphics. Wikipedia refers to this as the ABS Lossless Entropy Algorithm. Googling for further details on that algorithm name yields no results, but I suspect it’s unrelated to anti-lock brakes. The algorithm is alleged to allow Star Ocean to smash 13 MB of graphics into a 4 MB cartridge ROM (largest size of an SNES cartridge).
- The SPC7110 can decompress data using a combination of arithmetic coding and Z-curve/Morton curve reordering.
No, I don’t plan to implement codecs for these schemes. But it’s always comforting to know that I could.
Not directly a compression scheme, but still a curious item is the MSU1 concept put forth by the bsnes emulator. This is a hypothetical coprocessor implemented by bsnes that gives an emulated cartridge access to a 4 GB address space. What to do with all this space ? Allow for the playback of uncompressed PCM audio as well as uncompressed video at 240x144x256 colors @ 30 fps. According to the docs and the source code, the latter feature doesn’t appear to be implemented, though ; only the raw PCM playback.
-
Chiptune Database and API
14 septembre 2012, par Multimedia Mike — GeneralSo I set out to create a website that allows people to easily listen to video game music directly through their web browser. I succeeded in that goal. However, I must admit that the project has limited appeal since the web player is delivered via Chrome’s Native Client technology, somewhat limiting its audience. I’m not certain if anyone really expects NaCl to take off in any serious way, but I still have a few other projects in mind.
I recently realized that, as a side effect of this project, I accidentally created something of significant value to fans of old video games and associated music– a searchable database of chiptune music and metadata. To my knowledge, no one else has endeavored to create such a thing. I figured that I might as well make the database easily accessible with an API and see where it leads.
To that end, I created 2 API entry points. First, there is the search API located at http://gamemusic.multimedia.cx/api/search/. This can be exercised by ending the URL with a URL-encoded search string, e.g. : http://gamemusic.multimedia.cx/api/search/super+mario. This returns JSON data containing an array of results in decreasing order of relevance. Each result has a game title, database ID, media URL, system type, and an SHA-1 hash. This is the same API that the site’s own search page uses.
The database ID can be plugged into http://gamemusic.multimedia.cx/api/metadata/ to retrieve the song’s metadata in JSON format. E.g., the ID for Super Mario Bros. 3 on the NES is 161 : http://gamemusic.multimedia.cx/api/metadata/161.
I recently read an article about sins against true RESTful API principles which led me to believe I’m almost certainly doing this web API stuff wrong. I don’t think it’s a huge deal, though, since I don’t think anyone actually listens to chiptunes any more. But if there are offline chiptune music players that are still in service and actively maintained, perhaps the authors would like to implement this API. It would require some type of HTTP networking library, a JSON parser, the embedded XZ decoder, and some new code to parse through my .gamemusic and .psfarchive formats.
This database could be a significant value-add to chiptune playback software, and could help people experience classic game music much more easily.