Recherche avancée

Médias (0)

Mot : - Tags -/xmlrpc

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (24)

  • Déploiements possibles

    31 janvier 2010, par

    Deux types de déploiements sont envisageable dépendant de deux aspects : La méthode d’installation envisagée (en standalone ou en ferme) ; Le nombre d’encodages journaliers et la fréquentation envisagés ;
    L’encodage de vidéos est un processus lourd consommant énormément de ressources système (CPU et RAM), il est nécessaire de prendre tout cela en considération. Ce système n’est donc possible que sur un ou plusieurs serveurs dédiés.
    Version mono serveur
    La version mono serveur consiste à n’utiliser qu’une (...)

  • Contribute to documentation

    13 avril 2011

    Documentation is vital to the development of improved technical capabilities.
    MediaSPIP welcomes documentation by users as well as developers - including : critique of existing features and functions articles contributed by developers, administrators, content producers and editors screenshots to illustrate the above translations of existing documentation into other languages
    To contribute, register to the project users’ mailing (...)

  • MediaSPIP v0.2

    21 juin 2013, par

    MediaSPIP 0.2 is the first MediaSPIP stable release.
    Its official release date is June 21, 2013 and is announced here.
    The zip file provided here only contains the sources of MediaSPIP in its standalone version.
    To get a working installation, you must manually install all-software dependencies on the server.
    If you want to use this archive for an installation in "farm mode", you will also need to proceed to other manual (...)

Sur d’autres sites (6065)

  • How to transcode 50 H264 Streams with FFMPEG more efficient ?

    20 juin 2019, par Kevin

    i need to (Re-)Transcode 50 Live-Streams. These streams are in H264 with 720p to 1080p and bitrates up to 10M. I just want to reduce the quality and bitrate of the streams to up to 720p with max. 2M Bitrate.

    That’s what i’m doing right now :

    ffmpeg -re -i "http://domain.tld/path/file.ext" -vcodec libx264 -preset veryfast -vf scale=-2:720 -b:v 2M -maxrate 2M -bufsize 1M -acodec libfdk_aac -f flv "rtmp://127.0.0.1:1935/live/stream_xyz"

    My Server CPU (2 x Xeon E5-2630 v3) is already at 100% with just 12 streams. I will upgrade my server to 2 x Xeon Gold 5118 next month, but i don’t think, that this will give me that much more power.

    Can someone help me, to do this more efficient ?

    Would it be more efficient / cheaper to do this with GPUs ?

    Or any other ideas, to do that as efficient and cheap as possible ?

    Thanks

  • ISO-9660 Compromise, Part 2 : Finding Root

    25 octobre 2021, par Multimedia Mike — General

    A long time ago, I dashed off a quick blog post with a curious finding after studying the ISO-9660 spec : The format stores multi-byte numbers in a format I termed “omni-endian”– the committee developing the format apparently couldn’t come to an agreement on this basic point regarding big- vs. little-endian encoding (I’m envisioning something along the lines of “tastes great ! … less filling !” in the committee meetings).

    I recently discovered another bit of compromise in the ISO-9660 spec : It seems that there are 2 different methods for processing the directory structure. That means it’s incumbent upon ISO-9660 creation software to fill in the data structures to support both methods, because some ISO-reading programs out there rely on one set of data structures while the rest prefer to read the other set.

    Background

    As a refresher, the “ISO” extension of an ISO file refers to the ISO-9660 specification. This is a type of read-only filesystem (i.e, the filesystem is created once and never updated after initial creation) for the purpose of storing on a read-only medium, often an optical disc (CD-ROM, DVD-ROM). The level of nostalgic interest I display for the ISO-9660 filesystem reminds me of my computer science curriculum professors from the mid-90s reminiscing about ye olden days of punchcard programming, but such is my lot. I’m probably also alone in my frustration of seeing rips of, e.g., GameCube or Xbox or 3DO games being tagged with the extension .ISO since those systems use different read-only filesystems.

    I recently fell in with an odd bunch called the eXoDOS project and was trying to help fill in a few gaps. One request was a 1994 game called Power Drive for DOS.


    Power Drive CD-ROM


    My usual CD-ROM ripping method (for the data track) is a simple ‘dd’ command from a Linux command line to copy the string of raw sectors. However, it turned out to be unusually difficult to open the resulting ISO. A few of the the options I know of worked but most didn’t. What’s the difference ?

    Methods that work :

    • Mounting the file with the Linux iso9660 kernel module, i.e.,
      mount -t iso9660 /dev/optical-drive /mnt

      or

      mount -t iso9660 -o loop /path/to/Power-Drive.iso /mnt
    • Directory Opus
    • Windows 10 can read the filesystem when reading the physical disc
    • Windows 10 can burn the ISO image to a new CD (“right click” -> “Burn disc image”) ; this method does not modify any of the existing sectors but did append 149 additional empty sectors

    Methods that don’t work :

    Understanding The Difference

    I think I might have a handle on why some tools are able to process this disc while most can’t. There appears to be 2 sets of data structures to describe the base of the filesystem : A root directory, and a path table. These both occur in the first substantive sector of the ISO-9660 filesystem, usually sector 16.

    A compact disc can be abstractly visualized as a long string of sectors, each one 2,352 bytes long. (See my Grand Unified Theory of Compact Disc post for deeper discussion.) A CD-ROM data track will contain 2048 bytes of data. Thus, sector 16 appears at 0x8000 of an ISO filesystem. I like the clarity of this description of the ISO-9660 spec. It shows that the path table is defined at byte 140 (little-endian ; big comes later) and location of the root directory is at byte 158. Thus, these locations generally occur at 0x808c and 0x809e.


    Primary Volume Descriptor
    Primary Volume Descriptor

    The path table is highlighted in green and the root directory record is highlighted in red. These absolute locations are specified in sectors. So the path table is located at sector 0x12 = offset 0x9000 in the image, while the root directory record is supposed to be at sector 0x62 = 0x31000. Checking into those sectors, it turns out that the path table is valid while the root directory record is invalid. Thus, any tool that relies on the path table will be successful in interpreting the disc, while tools that attempt to recursively traverse starting from root directory record are gonna have a bad time.

    Since I was able to view the filesystem with a few different tools, I know what the root directory contains. Searching for those filenames reveals that the root directory was supposed to point to the next sector, number 0x63. So this was a bizarre off-by-1 error on the part of the ISO creation tool. Maybe. I manually corrected 0x62 -> 0x63 and that fixed the interaction with fuseiso, but not with other tools. So there may have been some other errors. Note that a quick spot-check of another, functional ISO revealed that this root directory sector is supposed to be exact, not 1-indexed.

    Upon further inspection, I noticed that, while fuseiso appeared to work with that one patch, none of the files returned correct data, and none of the directories contained anything. That’s when I noticed that ALL of the sector locations described in the various directory and file records are off by 1 !

    Further Investigation

    I have occasionally run across ISO images on the Internet Archive that return the error about not being able to read the contents when trying to “View contents” (error text : “failed to obtain file list from xyz.iso”, as seen with this ISO). Too bad I didn’t make a record of them because I would be interested to see if they have the same corruption.

    Eventually, I’ll probably be able to compile an archive of deviant ISO-9660 images. A few months ago, I was processing a large collection from IA and found a corrupted ISO which had a cycle, i.e., the subdirectory pointed to a parent directory, which caused various ISO tools to loop forever. Just one of those things that is “never supposed to happen”, so why write code to deal with it gracefully ?

    See Also

    The post ISO-9660 Compromise, Part 2 : Finding Root first appeared on Breaking Eggs And Making Omelettes.

  • lavfi/vf_decimate : do not compare the first frame to itself.

    24 octobre 2015, par Nicolas George
    lavfi/vf_decimate : do not compare the first frame to itself.
    

    This is a waste of computing power and will result to 0,
    making it always dropped.
    Use maximum difference values instead.

    • [DH] libavfilter/vf_decimate.c