
Recherche avancée
Médias (29)
-
#7 Ambience
16 octobre 2011, par
Mis à jour : Juin 2015
Langue : English
Type : Audio
-
#6 Teaser Music
16 octobre 2011, par
Mis à jour : Février 2013
Langue : English
Type : Audio
-
#5 End Title
16 octobre 2011, par
Mis à jour : Février 2013
Langue : English
Type : Audio
-
#3 The Safest Place
16 octobre 2011, par
Mis à jour : Février 2013
Langue : English
Type : Audio
-
#4 Emo Creates
15 octobre 2011, par
Mis à jour : Février 2013
Langue : English
Type : Audio
-
#2 Typewriter Dance
15 octobre 2011, par
Mis à jour : Février 2013
Langue : English
Type : Audio
Autres articles (25)
-
Encoding and processing into web-friendly formats
13 avril 2011, parMediaSPIP automatically converts uploaded files to internet-compatible formats.
Video files are encoded in MP4, Ogv and WebM (supported by HTML5) and MP4 (supported by Flash).
Audio files are encoded in MP3 and Ogg (supported by HTML5) and MP3 (supported by Flash).
Where possible, text is analyzed in order to retrieve the data needed for search engine detection, and then exported as a series of image files.
All uploaded files are stored online in their original format, so you can (...) -
Support de tous types de médias
10 avril 2011Contrairement à beaucoup de logiciels et autres plate-formes modernes de partage de documents, MediaSPIP a l’ambition de gérer un maximum de formats de documents différents qu’ils soient de type : images (png, gif, jpg, bmp et autres...) ; audio (MP3, Ogg, Wav et autres...) ; vidéo (Avi, MP4, Ogv, mpg, mov, wmv et autres...) ; contenu textuel, code ou autres (open office, microsoft office (tableur, présentation), web (html, css), LaTeX, Google Earth) (...)
-
List of compatible distributions
26 avril 2011, parThe table below is the list of Linux distributions compatible with the automated installation script of MediaSPIP. Distribution nameVersion nameVersion number Debian Squeeze 6.x.x Debian Weezy 7.x.x Debian Jessie 8.x.x Ubuntu The Precise Pangolin 12.04 LTS Ubuntu The Trusty Tahr 14.04
If you want to help us improve this list, you can provide us access to a machine whose distribution is not mentioned above or send the necessary fixes to add (...)
Sur d’autres sites (7165)
-
Computer crashing when using python tools in same script
5 février 2023, par SL1997I am attempting to use the speech recognition toolkit VOSK and the speech diarization package Resemblyzer to transcibe audio and then identify the speakers in the audio.


Tools :


https://github.com/alphacep/vosk-api

https://github.com/resemble-ai/Resemblyzer

I can do both things individually but run into issues when trying to do them when running the one python script.


I used the following guide when setting up the diarization system :




Computer specs are as follows :


Intel(R) Core(TM) i3-7100 CPU @ 3.90GHz, 3912 Mhz, 2 Core(s), 4 Logical Processor(s)

32GB RAM

The following is my code, I am not to sure if using threading is appropriate or if I even implemented it correctly, how can I best optimize this code as to achieve the results I am looking for and not crash.


from vosk import Model, KaldiRecognizer
from pydub import AudioSegment
import json
import sys
import os
import subprocess
import datetime
from resemblyzer import preprocess_wav, VoiceEncoder
from pathlib import Path
from resemblyzer.hparams import sampling_rate
from spectralcluster import SpectralClusterer
import threading
import queue
import gc



def recognition(queue, audio, FRAME_RATE):

 model = Model("Vosk_Models/vosk-model-small-en-us-0.15")

 rec = KaldiRecognizer(model, FRAME_RATE)
 rec.SetWords(True)

 rec.AcceptWaveform(audio.raw_data)
 result = rec.Result()

 transcript = json.loads(result)#["text"]

 #return transcript
 queue.put(transcript)



def diarization(queue, audio):

 wav = preprocess_wav(audio)
 encoder = VoiceEncoder("cpu")
 _, cont_embeds, wav_splits = encoder.embed_utterance(wav, return_partials=True, rate=16)
 print(cont_embeds.shape)

 clusterer = SpectralClusterer(
 min_clusters=2,
 max_clusters=100,
 p_percentile=0.90,
 gaussian_blur_sigma=1)

 labels = clusterer.predict(cont_embeds)

 def create_labelling(labels, wav_splits):

 times = [((s.start + s.stop) / 2) / sampling_rate for s in wav_splits]
 labelling = []
 start_time = 0

 for i, time in enumerate(times):
 if i > 0 and labels[i] != labels[i - 1]:
 temp = [str(labels[i - 1]), start_time, time]
 labelling.append(tuple(temp))
 start_time = time
 if i == len(times) - 1:
 temp = [str(labels[i]), start_time, time]
 labelling.append(tuple(temp))

 return labelling

 #return
 labelling = create_labelling(labels, wav_splits)
 queue.put(labelling)



def identify_speaker(queue1, queue2):

 transcript = queue1.get()
 labelling = queue2.get()

 for speaker in labelling:

 speakerID = speaker[0]
 speakerStart = speaker[1]
 speakerEnd = speaker[2]

 result = transcript['result']
 words = [r['word'] for r in result if speakerStart < r['start'] < speakerEnd]
 #return
 print("Speaker",speakerID,":",' '.join(words), "\n")





def main():

 queue1 = queue.Queue()
 queue2 = queue.Queue()

 FRAME_RATE = 16000
 CHANNELS = 1

 podcast = AudioSegment.from_mp3("Podcast_Audio/Film-Release-Clip.mp3")
 podcast = podcast.set_channels(CHANNELS)
 podcast = podcast.set_frame_rate(FRAME_RATE)

 first_thread = threading.Thread(target=recognition, args=(queue1, podcast, FRAME_RATE))
 second_thread = threading.Thread(target=diarization, args=(queue2, podcast))
 third_thread = threading.Thread(target=identify_speaker, args=(queue1, queue2))

 first_thread.start()
 first_thread.join()
 gc.collect()

 second_thread.start()
 second_thread.join()
 gc.collect()

 third_thread.start()
 third_thread.join()
 gc.collect()

 # transcript = recognition(podcast,FRAME_RATE)
 #
 # labelling = diarization(podcast)
 #
 # print(identify_speaker(transcript, labelling))


if __name__ == '__main__':
 main()



When I say crash I mean everything freezes, I have to hold down the power button on the desktop and turn it back on again. No blue/blank screen, just frozen in my IDE looking at my code. Any help in resolving this issue would be greatly appreciated.


-
Access video stream from Cloud IP Camera
13 février 2018, par Ferguson -
FFMEG : run code after complete conversion
26 octobre 2019, par Сергей БарахтенкоThere is a code that runs FFMPEG
shell_exec($this->config->item('ffmpeg') . ' -i ' . $path . ' ' . $cmd . ' 1>' . $folder . '/log.txt 2>&1 ');
And there is the following line, which should, taking into account the peculiarities of the PHP language, work out immediately after
shell_exec
$params = array(
'status' => 'ready'
);
$result = $this->model->editVideo($video_key, $params);This line simply updates the status of the video in the database
My question is, why doesn’t the further php code work after completion
shell_exec
? What could be the catch ?