
Recherche avancée
Médias (91)
-
MediaSPIP Simple : futur thème graphique par défaut ?
26 septembre 2013, par
Mis à jour : Octobre 2013
Langue : français
Type : Video
-
avec chosen
13 septembre 2013, par
Mis à jour : Septembre 2013
Langue : français
Type : Image
-
sans chosen
13 septembre 2013, par
Mis à jour : Septembre 2013
Langue : français
Type : Image
-
config chosen
13 septembre 2013, par
Mis à jour : Septembre 2013
Langue : français
Type : Image
-
SPIP - plugins - embed code - Exemple
2 septembre 2013, par
Mis à jour : Septembre 2013
Langue : français
Type : Image
-
GetID3 - Bloc informations de fichiers
9 avril 2013, par
Mis à jour : Mai 2013
Langue : français
Type : Image
Autres articles (64)
-
Websites made with MediaSPIP
2 mai 2011, parThis page lists some websites based on MediaSPIP.
-
Possibilité de déploiement en ferme
12 avril 2011, parMediaSPIP peut être installé comme une ferme, avec un seul "noyau" hébergé sur un serveur dédié et utilisé par une multitude de sites différents.
Cela permet, par exemple : de pouvoir partager les frais de mise en œuvre entre plusieurs projets / individus ; de pouvoir déployer rapidement une multitude de sites uniques ; d’éviter d’avoir à mettre l’ensemble des créations dans un fourre-tout numérique comme c’est le cas pour les grandes plate-formes tout public disséminées sur le (...) -
Ajouter des informations spécifiques aux utilisateurs et autres modifications de comportement liées aux auteurs
12 avril 2011, parLa manière la plus simple d’ajouter des informations aux auteurs est d’installer le plugin Inscription3. Il permet également de modifier certains comportements liés aux utilisateurs (référez-vous à sa documentation pour plus d’informations).
Il est également possible d’ajouter des champs aux auteurs en installant les plugins champs extras 2 et Interface pour champs extras.
Sur d’autres sites (10668)
-
Using moviepy, how can I splice up long videos into 8-second bits ?
18 septembre 2020, par ekinugurelrelatively new python user here. I'm trying to use moviepy to splice up 5 min long videos into 8-second bits. I used the code in this thread to extract subclips and it works. I did the following to make it a loop that covers the whole video, but I only get one 8-sec video as an output :


from moviepy.video.io.ffmpeg_tools import ffmpeg_extract_subclip
videopath = '../img/videos/Mopac+Cesarchavez-1.m4v'

for sec in videopath:
 sec = 0
 ffmpeg_extract_subclip(videopath, sec, sec+8.00, "../img/videos/subclips/testclip.mp4")
 if sec == 327:
 break



Do I need to specify a naming convention so that my output isn't just one video ? How would I do that ?


-
(no accepted answer) How to merge 2 overlapping videos into one video using ffmpeg or opencv ?
3 janvier 2021, par Muhammad UmerMerging two videos is easy, been answered couple of times. What I have is multiple overlapping videos. A video might have overlaps with video before it. Meaning if video 1 covers 1-5 timeline then video 2 may overlap 1, and cover 3 to 8. Merging them as is would result in 1-5|3-8, when i need 1-8 only.



Videos are alphabetically sorted.



My general idea of solution is...



- 

- grab last frame of the video
- if it's first video continue
- if it's not first video, ie. 2nd, search for frame saved in previous steps frame by frame
- if it reaches to last frame of current video then there is no overlap continue
- if it founds a frame then clip 2nd video up to that frame inclusive and then go to next frame
- once all videos have been analyzed, merge them into one video.















I need to translate this to ffmpeg commands. Or opencv if that's a better tool.



If there is better way of doing that, I'm interested in that too.


-
How to Stream Audio from Google Cloud Storage in Chunks and Convert Each Chunk to WAV for Whisper Transcription
25 juillet, par Douglas LandvikI'm working on a project where I need to transcribe audio stored in a Google Cloud Storage bucket using OpenAI's Whisper model. The audio is stored in WebM format with Opus encoding, and due to the file size, I'm streaming the audio in 30-second chunks.


To convert each chunk to WAV (16 kHz, mono, 16-bit PCM) compatible with Whisper, I'm using FFmpeg. The first chunk converts successfully, but subsequent chunks fail to convert. I suspect this is because each chunk lacks the WebM container's header, which FFmpeg needs to interpret the Opus codec correctly.


Here’s a simplified version of my approach :


Download Chunk : I download each chunk from GCS as bytes.
Convert with FFmpeg : I pass the bytes to FFmpeg to convert each chunk from WebM/Opus to WAV.


async def handle_transcription_and_notify(
 consultation_service: ConsultationService,
 consultation_processor: ConsultationProcessor,
 consultation: Consultation,
 language: str,
 notes: str,
 clinic_id: str,
 vet_email: str,
 trace_id: str,
 blob_path: str,
 max_retries: int = 3,
 retry_delay: int = 5,
 max_concurrent_tasks: int = 3
):
 """
 Handles the transcription process by streaming the file from GCS, converting to a compatible format, 
 and notifying the client via WebSocket.
 """
 chunk_duration_sec = 30 # 30 seconds per chunk
 logger.info(f"Starting transcription process for consultation {consultation.consultation_id}",
 extra={'trace_id': trace_id})

 # Initialize GCS client
 service_account_key = os.environ.get('SERVICE_ACCOUNT_KEY_BACKEND')
 if not service_account_key:
 logger.error("Service account key not found in environment variables", extra={'trace_id': trace_id})
 await send_discord_alert(
 f"Service account key not found for consultation {consultation.consultation_id}.\nTrace ID: {trace_id}"
 )
 return

 try:
 service_account_info = json.loads(service_account_key)
 credentials = service_account.Credentials.from_service_account_info(service_account_info)
 except Exception as e:
 logger.error(f"Error loading service account credentials: {str(e)}", extra={'trace_id': trace_id})
 await send_discord_alert(
 f"Error loading service account credentials for consultation {consultation.consultation_id}.\nError: {str(e)}\nTrace ID: {trace_id}"
 )
 return

 # Initialize GCS client
 service_account_key = os.environ.get('SERVICE_ACCOUNT_KEY_BACKEND')
 if not service_account_key:
 logger.error("Service account key not found in environment variables", extra={'trace_id': trace_id})
 await send_discord_alert(
 f"Service account key not found for consultation {consultation.consultation_id}.\nTrace ID: {trace_id}"
 )
 return

 try:
 service_account_info = json.loads(service_account_key)
 credentials = service_account.Credentials.from_service_account_info(service_account_info)
 except Exception as e:
 logger.error(f"Error loading service account credentials: {str(e)}", extra={'trace_id': trace_id})
 await send_discord_alert(
 f"Error loading service account credentials for consultation {consultation.consultation_id}.\nError: {str(e)}\nTrace ID: {trace_id}"
 )
 return

 storage_client = storage.Client(credentials=credentials)
 bucket_name = 'vetz_consultations'
 blob = storage_client.bucket(bucket_name).get_blob(blob_path)
 bytes_per_second = 16000 * 2 # 32,000 bytes per second
 chunk_size_bytes = 30 * bytes_per_second
 size = blob.size

 async def stream_blob_in_chunks(blob, chunk_size):
 loop = asyncio.get_running_loop()
 start = 0
 size = blob.size
 while start < size:
 end = min(start + chunk_size - 1, size - 1)
 try:
 logger.info(f"Requesting chunk from {start} to {end}", extra={'trace_id': trace_id})
 chunk = await loop.run_in_executor(
 None, lambda: blob.download_as_bytes(start=start, end=end)
 )
 if not chunk:
 break
 logger.info(f"Yielding chunk from {start} to {end}, size: {len(chunk)} bytes",
 extra={'trace_id': trace_id})
 yield chunk
 start += chunk_size
 except Exception as e:
 logger.error(f"Error downloading chunk from {start} to {end}: {str(e)}", exc_info=True,
 extra={'trace_id': trace_id})
 raise e

 async def convert_to_wav(chunk_bytes, chunk_idx):
 """
 Convert audio chunk to WAV format compatible with Whisper, ensuring it's 16 kHz, mono, and 16-bit PCM.
 """
 try:
 logger.debug(f"Processing chunk {chunk_idx}: size = {len(chunk_bytes)} bytes")

 detected_format = await detect_audio_format(chunk_bytes)
 logger.info(f"Detected audio format for chunk {chunk_idx}: {detected_format}")
 input_io = io.BytesIO(chunk_bytes)
 output_io = io.BytesIO()

 # ffmpeg command to convert webm/opus to WAV with 16 kHz, mono, and 16-bit PCM

 # ffmpeg command with debug information
 ffmpeg_command = [
 "ffmpeg",
 "-loglevel", "debug",
 "-f", "s16le", # Treat input as raw PCM data
 "-ar", "48000", # Set input sample rate
 "-ac", "1", # Set input to mono
 "-i", "pipe:0",
 "-ar", "16000", # Set output sample rate to 16 kHz
 "-ac", "1", # Ensure mono output
 "-sample_fmt", "s16", # Set output format to 16-bit PCM
 "-f", "wav", # Output as WAV format
 "pipe:1"
 ]

 process = subprocess.Popen(
 ffmpeg_command,
 stdin=subprocess.PIPE,
 stdout=subprocess.PIPE,
 stderr=subprocess.PIPE
 )

 stdout, stderr = process.communicate(input=input_io.read())

 if process.returncode == 0:
 logger.info(f"FFmpeg conversion completed successfully for chunk {chunk_idx}")
 output_io.write(stdout)
 output_io.seek(0)

 # Save the WAV file locally for listening
 output_dir = "converted_chunks"
 os.makedirs(output_dir, exist_ok=True)
 file_path = os.path.join(output_dir, f"chunk_{chunk_idx}.wav")

 with open(file_path, "wb") as f:
 f.write(stdout)
 logger.info(f"Chunk {chunk_idx} saved to {file_path}")

 return output_io
 else:
 logger.error(f"FFmpeg failed for chunk {chunk_idx} with return code {process.returncode}")
 logger.error(f"Chunk {chunk_idx} - FFmpeg stderr: {stderr.decode()}")
 return None

 except Exception as e:
 logger.error(f"Unexpected error in FFmpeg conversion for chunk {chunk_idx}: {str(e)}")
 return None

 async def transcribe_chunk(idx, chunk_bytes):
 for attempt in range(1, max_retries + 1):
 try:
 logger.info(f"Transcribing chunk {idx + 1} (attempt {attempt}).", extra={'trace_id': trace_id})

 # Convert to WAV format
 wav_io = await convert_to_wav(chunk_bytes, idx)
 if not wav_io:
 logger.error(f"Failed to convert chunk {idx + 1} to WAV format.")
 return ""

 wav_io.name = "chunk.wav"
 chunk_transcription = await consultation_processor.transcribe_audio_whisper(wav_io)
 logger.info(f"Chunk {idx + 1} transcribed successfully.", extra={'trace_id': trace_id})
 return chunk_transcription
 except Exception as e:
 logger.error(f"Error transcribing chunk {idx + 1} (attempt {attempt}): {str(e)}", exc_info=True,
 extra={'trace_id': trace_id})
 if attempt < max_retries:
 await asyncio.sleep(retry_delay)
 else:
 await send_discord_alert(
 f"Max retries reached for chunk {idx + 1} in consultation {consultation.consultation_id}.\nError: {str(e)}\nTrace ID: {trace_id}"
 )
 return "" # Return empty string for failed chunk

 await notification_manager.send_personal_message(
 f"Consultation {consultation.consultation_id} is being transcribed.", vet_email
 )

 try:
 idx = 0
 full_transcription = []
 async for chunk in stream_blob_in_chunks(blob, chunk_size_bytes):
 transcription = await transcribe_chunk(idx, chunk)
 if transcription:
 full_transcription.append(transcription)
 idx += 1

 combined_transcription = " ".join(full_transcription)
 consultation.full_transcript = (consultation.full_transcript or "") + " " + combined_transcription
 consultation_service.save_consultation(clinic_id, vet_email, consultation)
 logger.info(f"Transcription saved for consultation {consultation.consultation_id}.",
 extra={'trace_id': trace_id})

 except Exception as e:
 logger.error(f"Error during transcription process: {str(e)}", exc_info=True, extra={'trace_id': trace_id})
 await send_discord_alert(
 f"Error during transcription process for consultation {consultation.consultation_id}.\nError: {str(e)}\nTrace ID: {trace_id}"
 )
 return

 await notification_manager.send_personal_message(
 f"Consultation {consultation.consultation_id} has been transcribed.", vet_email
 )

 try:
 template_service = TemplateService()
 medical_record_template = template_service.get_template_by_name(
 consultation.medical_record_template_id).sections

 sections = await consultation_processor.extract_structured_sections(
 transcription=consultation.full_transcript,
 notes=notes,
 language=language,
 template=medical_record_template,
 )
 consultation.sections = sections
 consultation_service.save_consultation(clinic_id, vet_email, consultation)
 logger.info(f"Sections processed for consultation {consultation.consultation_id}.",
 extra={'trace_id': trace_id})
 except Exception as e:
 logger.error(f"Error processing sections for consultation {consultation.consultation_id}: {str(e)}",
 exc_info=True, extra={'trace_id': trace_id})
 await send_discord_alert(
 f"Error processing sections for consultation {consultation.consultation_id}.\nError: {str(e)}\nTrace ID: {trace_id}"
 )
 raise e

 await notification_manager.send_personal_message(
 f"Consultation {consultation.consultation_id} is fully processed.", vet_email
 )
 logger.info(f"Successfully processed consultation {consultation.consultation_id}.",
 extra={'trace_id': trace_id})