
Recherche avancée
Autres articles (25)
-
Encoding and processing into web-friendly formats
13 avril 2011, parMediaSPIP automatically converts uploaded files to internet-compatible formats.
Video files are encoded in MP4, Ogv and WebM (supported by HTML5) and MP4 (supported by Flash).
Audio files are encoded in MP3 and Ogg (supported by HTML5) and MP3 (supported by Flash).
Where possible, text is analyzed in order to retrieve the data needed for search engine detection, and then exported as a series of image files.
All uploaded files are stored online in their original format, so you can (...) -
Support de tous types de médias
10 avril 2011Contrairement à beaucoup de logiciels et autres plate-formes modernes de partage de documents, MediaSPIP a l’ambition de gérer un maximum de formats de documents différents qu’ils soient de type : images (png, gif, jpg, bmp et autres...) ; audio (MP3, Ogg, Wav et autres...) ; vidéo (Avi, MP4, Ogv, mpg, mov, wmv et autres...) ; contenu textuel, code ou autres (open office, microsoft office (tableur, présentation), web (html, css), LaTeX, Google Earth) (...)
-
List of compatible distributions
26 avril 2011, parThe table below is the list of Linux distributions compatible with the automated installation script of MediaSPIP. Distribution nameVersion nameVersion number Debian Squeeze 6.x.x Debian Weezy 7.x.x Debian Jessie 8.x.x Ubuntu The Precise Pangolin 12.04 LTS Ubuntu The Trusty Tahr 14.04
If you want to help us improve this list, you can provide us access to a machine whose distribution is not mentioned above or send the necessary fixes to add (...)
Sur d’autres sites (6695)
-
Change video file used for saving in table
9 août 2017, par CR7I am trying to convert uploaded video file to mp4 format. It is working properly. But after that in my DB, it is saving the old video file details instead of converted file. Also the converted file is saved in the uploaded video name and extension. I am using streamio-ffmpeg gem
In my model I have the following code.
mount_uploader :video, VideoUploader
and in the video_uploader.rb
require 'streamio-ffmpeg'
class VideoUploader < CarrierWave::Uploader::Base
process :encode_video
def encode_video
file = FFMPEG::Movie.new(current_path)
filename = "#{current_path.chomp(File.extname(current_path))}.mp4"
file.transcode(filename)
FileUtils.mv(filename, current_path)
end
endHow can I set the current_path file to the converted file path
-
DNN OpenCV Python using RSTP always crash after few minutes
1er juillet 2022, par renaldyksDescription :


I want to create a people counter using DNN. The model I'm using is MobileNetSSD. The camera I use is IPCam from Hikvision. Python communicates with IPCam using the RSTP protocol.


The program that I made is good and there are no bugs, when running the sample video the program does its job well. But when I replaced it with IPcam there was an unknown error.


Error :


Sometimes the error is :


[h264 @ 000001949f7adfc0] error while decoding MB 13 4, bytestream -6
[h264 @ 000001949f825ac0] left block unavailable for requested intra4x4 mode -1
[h264 @ 000001949f825ac0] error while decoding MB 0 17, bytestream 762



Sometimes the error does not appear and the program is killed.



Update Error


After revising the code, I caught the error. The error found is


[h264 @ 0000019289b3fa80] error while decoding MB 4 5, bytestream -25



Now I don't know what to do, because the error is not in Google.


Source Code :


Old Code


This is my very earliest code before getting suggestions from the comments field.


import time
import cv2
import numpy as np
import math
import threading

print("Load MobileNeteSSD model")

prototxt = "MobileNetSSD_deploy.prototxt"
model = "MobileNetSSD_deploy.caffemodel"

CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
 "bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
 "dog", "horse", "motorbike", "person", "pottedplant", "sheep",
 "sofa", "train", "tvmonitor"]

net = cv2.dnn.readNetFromCaffe(prototxt, model)

pos_line = 0
offset = 50
car = 0
detected = False
check = 0
prev_frame_time = 0


def detect():
 global check, car, detected
 check = 0
 if(detected == False):
 car += 1
 detected = True


def center_object(x, y, w, h):
 cx = x + int(w / 2)
 cy = y + int(h / 2)
 return cx, cy


def process_frame_MobileNetSSD(next_frame):
 global car, check, detected

 rgb = cv2.cvtColor(next_frame, cv2.COLOR_BGR2RGB)
 (H, W) = next_frame.shape[:2]

 blob = cv2.dnn.blobFromImage(next_frame, size=(300, 300), ddepth=cv2.CV_8U)
 net.setInput(blob, scalefactor=1.0/127.5, mean=[127.5, 127.5, 127.5])
 detections = net.forward()

 for i in np.arange(0, detections.shape[2]):
 confidence = detections[0, 0, i, 2]

 if confidence > 0.5:

 idx = int(detections[0, 0, i, 1])
 if CLASSES[idx] != "person":
 continue

 label = CLASSES[idx]

 box = detections[0, 0, i, 3:7] * np.array([W, H, W, H])
 (startX, startY, endX, endY) = box.astype("int")

 center_ob = center_object(startX, startY, endX-startX, endY-startY)
 cv2.circle(next_frame, center_ob, 4, (0, 0, 255), -1)

 if center_ob[0] < (pos_line+offset) and center_ob[0] > (pos_line-offset):
 # car+=1
 detect()

 else:
 check += 1
 if(check >= 5):
 detected = False

 cv2.putText(next_frame, label+' '+str(round(confidence, 2)),
 (startX, startY-10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
 cv2.rectangle(next_frame, (startX, startY),
 (endX, endY), (0, 255, 0), 3)

 return next_frame


def PersonDetection_UsingMobileNetSSD():
 cap = cv2.VideoCapture()
 cap.open("rtsp://admin:Admin12345@192.168.100.20:554/Streaming/channels/2/")

 global car,pos_line,prev_frame_time

 frame_count = 0

 while True:
 try:
 time.sleep(0.1)
 new_frame_time = time.time()
 fps = int(1/(new_frame_time-prev_frame_time))
 prev_frame_time = new_frame_time

 ret, next_frame = cap.read()
 w_video = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
 h_video = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
 pos_line = int(h_video/2)-50

 if ret == False: break

 frame_count += 1
 cv2.line(next_frame, (int(h_video/2), 0),
 (int(h_video/2), int(h_video)), (255, 127, 0), 3)
 next_frame = process_frame_MobileNetSSD(next_frame)

 cv2.rectangle(next_frame, (248,22), (342,8), (0,0,0), -1)
 cv2.putText(next_frame, "Counter : "+str(car), (250, 20),
 cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
 cv2.putText(next_frame, "FPS : "+str(fps), (0, int(h_video)-10),
 cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
 cv2.imshow("Video Original", next_frame)
 # print(car)

 except Exception as e:
 print(str(e))

 if cv2.waitKey(1) & 0xFF == ord('q'): 
 break


 print("/MobileNetSSD Person Detector")


 cap.release()
 cv2.destroyAllWindows()

if __name__ == "__main__":
 t1 = threading.Thread(PersonDetection_UsingMobileNetSSD())
 t1.start()



New Code


I have revised my code and the program still stops taking frames. I just revised the PersonDetection_UsingMobileNetSSD() function. I've also removed the multithreading I was using. The code has been running for about 30 minutes but after a broken frame, the code will never re-execute the program block
if ret == True
.

def PersonDetection_UsingMobileNetSSD():
 cap = cv2.VideoCapture()
 cap.open("rtsp://admin:Admin12345@192.168.100.20:554/Streaming/channels/2/")

 global car,pos_line,prev_frame_time

 frame_count = 0

 while True:
 try:
 if cap.isOpened():
 ret, next_frame = cap.read()
 if ret:
 new_frame_time = time.time()
 fps = int(1/(new_frame_time-prev_frame_time))
 prev_frame_time = new_frame_time
 w_video = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
 h_video = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
 pos_line = int(h_video/2)-50

 # next_frame = cv2.resize(next_frame,(720,480),fx=0,fy=0, interpolation = cv2.INTER_CUBIC)

 if ret == False: break

 frame_count += 1
 cv2.line(next_frame, (int(h_video/2), 0),
 (int(h_video/2), int(h_video)), (255, 127, 0), 3)
 next_frame = process_frame_MobileNetSSD(next_frame)

 cv2.rectangle(next_frame, (248,22), (342,8), (0,0,0), -1)
 cv2.putText(next_frame, "Counter : "+str(car), (250, 20),
 cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
 cv2.putText(next_frame, "FPS : "+str(fps), (0, int(h_video)-10),
 cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
 cv2.imshow("Video Original", next_frame)
 # print(car)
 else:
 print("Crashed Frame")
 else:
 print("Cap is not open")

 except Exception as e:
 print(str(e))

 if cv2.waitKey(1) & 0xFF == ord('q'): 
 break


 print("/MobileNetSSD Person Detector")


 cap.release()
 cv2.destroyAllWindows()



Requirement :


Hardware : Intel i5-1035G1, RAM 8 GB, NVIDIA GeForce MX330


Software : Python 3.6.2 , OpenCV 4.5.1, Numpy 1.16.0


Question :


- 

- What should i do for fixing this error ?
- What causes this to happen ?






Best Regards,



Thanks


-
dnn_backend_native_layer_mathunary : add abs support
25 mai 2020, par Ting Fudnn_backend_native_layer_mathunary : add abs support
more math unary operations will be added here
It can be tested with the model file generated with below python scripy :
import tensorflow as tf
import numpy as np
import imageioin_img = imageio.imread('input.jpeg')
in_img = in_img.astype(np.float32)/255.0
in_data = in_img[np.newaxis, :]x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
x1 = tf.subtract(x, 0.5)
x2 = tf.abs(x1)
y = tf.identity(x2, name='dnn_out')sess=tf.Session()
sess.run(tf.global_variables_initializer())graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)print("image_process.pb generated, please use \
path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")output = sess.run(y, feed_dict=x : in_data)
imageio.imsave("out.jpg", np.squeeze(output))Signed-off-by : Ting Fu <ting.fu@intel.com>
Signed-off-by : Guo, Yejun <yejun.guo@intel.com>- [DH] libavfilter/dnn/Makefile
- [DH] libavfilter/dnn/dnn_backend_native.h
- [DH] libavfilter/dnn/dnn_backend_native_layer_mathunary.c
- [DH] libavfilter/dnn/dnn_backend_native_layer_mathunary.h
- [DH] libavfilter/dnn/dnn_backend_native_layers.c
- [DH] tools/python/convert_from_tensorflow.py
- [DH] tools/python/convert_header.py