Recherche avancée

Médias (0)

Mot : - Tags -/tags

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (10)

  • Supporting all media types

    13 avril 2011, par

    Unlike most software and media-sharing platforms, MediaSPIP aims to manage as many different media types as possible. The following are just a few examples from an ever-expanding list of supported formats : images : png, gif, jpg, bmp and more audio : MP3, Ogg, Wav and more video : AVI, MP4, OGV, mpg, mov, wmv and more text, code and other data : OpenOffice, Microsoft Office (Word, PowerPoint, Excel), web (html, CSS), LaTeX, Google Earth and (...)

  • Ajouter notes et légendes aux images

    7 février 2011, par

    Pour pouvoir ajouter notes et légendes aux images, la première étape est d’installer le plugin "Légendes".
    Une fois le plugin activé, vous pouvez le configurer dans l’espace de configuration afin de modifier les droits de création / modification et de suppression des notes. Par défaut seuls les administrateurs du site peuvent ajouter des notes aux images.
    Modification lors de l’ajout d’un média
    Lors de l’ajout d’un média de type "image" un nouveau bouton apparait au dessus de la prévisualisation (...)

  • Keeping control of your media in your hands

    13 avril 2011, par

    The vocabulary used on this site and around MediaSPIP in general, aims to avoid reference to Web 2.0 and the companies that profit from media-sharing.
    While using MediaSPIP, you are invited to avoid using words like "Brand", "Cloud" and "Market".
    MediaSPIP is designed to facilitate the sharing of creative media online, while allowing authors to retain complete control of their work.
    MediaSPIP aims to be accessible to as many people as possible and development is based on expanding the (...)

Sur d’autres sites (4471)

  • Heroic Defender of the Stack

    27 janvier 2011, par Multimedia Mike — Programming

    Problem Statement

    I have been investigating stack smashing and countermeasures (stack smashing prevention, or SSP). Briefly, stack smashing occurs when a function allocates a static array on the stack and writes past the end of it, onto other local variables and eventually onto other function stack frames. When it comes time to return from the function, the return address has been corrupted and the program ends up some place it really shouldn’t. In the best case, the program just crashes ; in the worst case, a malicious party crafts code to exploit this malfunction.

    Further, debugging such a problem is especially obnoxious because by the time the program has crashed, it has already trashed any record (on the stack) of how it got into the errant state.

    Preventative Countermeasure

    GCC has had SSP since version 4.1. The computer inserts SSP as additional code when the -fstack-protector command line switch is specified. Implementation-wise, SSP basically inserts a special value (the literature refers to this as the ’canary’ as in "canary in the coalmine") at the top of the stack frame when entering the function, and code before leaving the function to make sure the canary didn’t get stepped on. If something happens to the canary, the program is immediately aborted with a message to stderr about what happened. Further, gcc’s man page on my Ubuntu machine proudly trumpets that this functionality is enabled per default ever since Ubuntu 6.10.

    And that’s really all there is to it. Your code is safe from stack smashing by default. Or so the hand-wavy documentation would have you believe.

    Not exactly

    Exercising the SSP

    I wanted to see the SSP in action to make sure it was a real thing. So I wrote some code that smashes the stack in pretty brazen ways so that I could reasonably expect to trigger the SSP (see later in this post for the code). Here’s what I learned that wasn’t in any documentation :

    SSP is only emitted for functions that have static arrays of 8-bit data (i.e., [unsigned] chars). If you have static arrays of other data types (like, say, 32-bit ints), those are still fair game for stack smashing.

    Evaluating the security vs. speed/code size trade-offs, it makes sense that the compiler wouldn’t apply this protection everywhere (I can only muse about how my optimization-obsessive multimedia hacking colleagues would absolute freak out if this code were unilaterally added to all functions). So why are only static char arrays deemed to be "vulnerable objects" (the wording that the gcc man page uses) ? A security hacking colleague suggested that this is probably due to the fact that the kind of data which poses the highest risk is arrays of 8-bit input data from, e.g., network sources.

    The gcc man page also lists an option -fstack-protector-all that is supposed to protect all functions. The man page’s definition of "all functions" perhaps differs from my own since invoking the option does not have differ in result from plain, vanilla -fstack-protector.

    The Valgrind Connection

    "Memory trouble ? Run Valgrind !" That may as well be Valgrind’s marketing slogan. Indeed, it’s the go-to utility for finding troublesome memory-related problems and has saved me on a number of occasions. However, it must be noted that it is useless for debugging this type of problem. If you understand how Valgrind works, this makes perfect sense. Valgrind operates by watching all memory accesses and ensuring that the program is only accessing memory to which it has privileges. In the stack smashing scenario, the program is fully allowed to write to that stack space ; after all, the program recently, legitimately pushed that return value onto the stack when calling the errant, stack smashing function.

    Valgrind embodies a suite of tools. My idea for an addition to this suite would be a mechanism which tracks return values every time a call instruction is encountered. The tool could track the return values in a separate stack data structure, though this might have some thorny consequences for some more unusual program flows. Instead, it might track them in some kind of hash/dictionary data structure and warn the programmer whenever a ’ret’ instruction is returning to an address that isn’t in the dictionary.

    Simple Stack Smashing Code

    Here’s the code I wrote to test exactly how SSP gets invoked in gcc. Compile with ’gcc -g -O0 -Wall -fstack-protector-all -Wstack-protector stack-fun.c -o stack-fun’.

    stack-fun.c :

    C :
    1. /* keep outside of the stack frame */
    2. static int i ;
    3.  
    4. void stack_smasher32(void)
    5. {
    6.  int buffer32[8] ;
    7.  // uncomment this array and compile without optimizations
    8.  // in order to force this function to compile with SSP
    9. // char buffer_to_trigger_ssp[8] ;
    10.  
    11.  for (i = 0 ; i <50 ; i++)
    12.   buffer32[i] = 0xA5 ;
    13. }
    14.  
    15. void stack_smasher8(void)
    16. {
    17.  char buffer8[8] ;
    18.  for (i = 0 ; i <50 ; i++)
    19.   buffer8[i] = 0xA5 ;
    20. }
    21.  
    22. int main()
    23. {
    24. // stack_smasher8() ;
    25.  stack_smasher32() ;
    26.  return 0 ;
    27. }

    The above incarnation should just produce the traditional "Segmentation fault". However, uncommenting and executing stack_smasher8() in favor of stack_smasher32() should result in "*** stack smashing detected *** : ./stack-fun terminated", followed by the venerable "Segmentation fault".

    As indicated in the comments for stack_smasher32(), it’s possible to trick the compiler into emitting SSP for a function by inserting an array of at least 8 bytes (any less and SSP won’t emit, as documented, unless gcc’s ssp-buffer-size parameter is tweaked). This has to be compiled with no optimization at all (-O0) or else the compiler will (quite justifiably) optimize away the unused buffer and omit SSP.

    For reference, I ran my tests on Ubuntu 10.04.1 with gcc 4.4.3 compiling the code for both x86_32 and x86_64.

  • Brute Force Dimensional Analysis

    15 juillet 2010, par Multimedia Mike — Game Hacking, Python

    I was poking at the data files of a really bad (is there any other kind ?) interactive movie video game known simply by one letter : D. The Sega Saturn version of the game is comprised primarily of Sega FILM/CPK files, about which I wrote the book. The second most prolific file type bears the extension ’.dg2’. Cursory examination of sample files revealed an apparently headerless format. Many of the video files are 288x144 in resolution. Multiplying that width by that height and then doubling it (as in, 2 bytes/pixel) yields 82944, which happens to be the size of a number of these DG2 files. Now, if only I had a tool that could take a suspected raw RGB file and convert it to a more standard image format.

    Here’s the FFmpeg conversion recipe I used :

     ffmpeg -f rawvideo -pix_fmt rgb555 -s 288x144 -i raw_file -y output.png
    

    So that covers the files that are suspected to be 288x144 in dimension. But what about other file sizes ? My brute force approach was to try all possible dimensions that would yield a particular file size. The Python code for performing this operation is listed at the end of this post.

    It’s interesting to view the progression as the script compresses to different sizes :



    That ’D’ is supposed to be red. So right away, we see that rgb555(le) is not the correct input format. Annoyingly, FFmpeg cannot handle rgb555be as a raw input format. But this little project worked well enough as a proof of concept.

    If you want to toy around with these files (and I know you do), I have uploaded a selection at : http://multimedia.cx/dg2/.

    Here is my quick Python script for converting one of these files to every acceptable resolution.

    work-out-resolution.py :

    PYTHON :
    1. # !/usr/bin/python
    2.  
    3. import commands
    4. import math
    5. import os
    6. import sys
    7.  
    8. FFMPEG = "/path/to/ffmpeg"
    9.  
    10. def convert_file(width, height, filename) :
    11.  outfile = "%s-%dx%d.png" % (filename, width, height)
    12.  command = "%s -f rawvideo -pix_fmt rgb555 -s %dx%d -i %s -y %s" % (FFMPEG, width, height, filename, outfile)
    13.  commands.getstatusoutput(command)
    14.  
    15. if len(sys.argv) <2 :
    16.  print "USAGE : work-out-resolution.py <file>"
    17.  sys.exit(1)
    18.  
    19. filename = sys.argv[1]
    20. if not os.path.exists(filename) :
    21.  print filename + " does not exist"
    22.  sys.exit(1)
    23.  
    24. filesize = os.path.getsize(filename) / 2
    25.  
    26. limit = int(math.sqrt(filesize)) + 1
    27. for i in xrange(1, limit) :
    28.  if filesize % i == 0 and filesize & 1 == 0 :
    29.   convert_file(i, filesize / i, filename)
    30.   convert_file(filesize / i, i, filename)
  • VP8 And FFmpeg

    18 juin 2010, par Multimedia Mike — VP8

    UPDATE, 2010-06-17 : You don’t need to struggle through these instructions anymore. libvpx 0.9.1 and FFmpeg 0.6 work together much better. Please see this post for simple instructions on getting up and running quickly.

    Let’s take the VP8 source code (in Google’s new libvpx library) for a spin ; get it to compile and hook it up to FFmpeg. I am hesitant to publish specific instructions for building in the somewhat hackish manner available on day 1 (download FFmpeg at a certain revision and apply a patch) since that kind of post has a tendency to rise in Google rankings. I will just need to remember to update this post after the library patches are applied to the official FFmpeg tree.

    Statement of libvpx’s Relationship to FFmpeg
    I don’t necessarily speak officially for FFmpeg. But I’ve been with the project long enough to explain how certain things work.

    Certainly, some may wonder if FFmpeg will incorporate Google’s newly open sourced libvpx library into FFmpeg. In the near term, FFmpeg will support encoding and decoding VP8 via external library as it does with a number of other libraries (most popularly, libx264). FFmpeg will not adopt the code for its own codebase, even if the license may allow it. That just isn’t how the FFmpeg crew rolls.

    In the longer term, expect the FFmpeg project to develop an independent, interoperable implementation of the VP8 decoder. Sometime after that, there may also be an independent VP8 encoder as well.

    Building libvpx
    Download and build libvpx. This is a basic ’configure && make’ process. The build process creates a static library, a bunch of header files, and 14 utilities. A bunch of these utilities operate on a file format called IVF which is apparently a simple transport method for VP8. I have recorded the file format on the wiki.

    We could use a decoder for this in the FFmpeg code base for testing VP8 in the future. Who’s game ? Just as I was proofreading this post, I saw that David Conrad has sent an IVF demuxer to the ffmpeg-devel list.

    There doesn’t seem to be a ’make install’ step for the library. Instead, go into the overly long directory (on my system, this is generated as vpx-vp8-nopost-nodocs-generic-gnu-v0.9.0), copy the contents of include/ to /usr/local/include and the static library in lib/ to /usr/local/lib .

    Building FFmpeg with libvpx
    Download FFmpeg source code at the revision specified or take your chances with the latest version (as I did). Download and apply provided patches. This part hurts since there is one diff per file. Most of them applied for me.

    Configure FFmpeg with 'configure --enable-libvpx_vp8 --enable-pthreads'. Ideally, this should yield no complaints and ’libvpx_vp8’ should show up in the enabled decoders and encoders sections. The library apparently relies on threading which is why '--enable-pthreads' is necessary. After I did this, I was able to create a new webm/VP8/Vorbis file simply with :

     ffmpeg -i input_file output_file.webm
    

    Unfortunately, I can’t complete the round trip as decoding doesn’t seem to work. Passing the generated .webm file back into FFmpeg results in a bunch of errors of this format :

    [libvpx_vp8 @ 0x8c4ab20]v0.9.0
    [libvpx_vp8 @ 0x8c4ab20]Failed to initialize decoder : Codec does not implement requested capability
    

    Maybe this is the FFmpeg revision mismatch biting me.

    FFmpeg Presets
    FFmpeg features support for preset files which contain collections of tuning options to be loaded into the program. Google provided some presets along with their FFmpeg patches :

    • 1080p50
    • 1080p
    • 360p
    • 720p50
    • 720p

    To invoke one of these (assuming the program has been installed via ’make install’ so that the presets are in the right place) :

     ffmpeg -i input_file -vcodec libvpx_vp8 -vpre 720p output_file.webm
    

    This will use a set of parameters that are known to do well when encoding a 720p video.

    Code Paths
    One of goals with this post was to visualize a call graph after I got the decoder hooked up to FFmpeg. Fortunately, this recon is greatly simplified by libvpx’s simple_decoder utility. Steps :

    • Build libvpx with --enable-gprof
    • Run simple_decoder on an IVF file
    • Get the pl_from_gprof.pl and dot_from_pl.pl scripts frome Graphviz’s gprof filters
    • gprof simple_decoder | ./pl_from_gprof.pl | ./dot_from_pl.pl > 001.dot
    • Remove the 2 [graph] and 1 [node] modifiers from the dot file (they only make the resulting graph very hard to read)
    • dot -Tpng 001.dot > 001.png

    Here are call graphs generated from decoding test vectors 001 and 017.


    Like this, only much larger and scarier (click for full graph)


    It’s funny to see several functions calling an empty bubble. Probably nothing to worry about. More interesting is the fact that a lot of function_c() functions are called. The ’_c’ at the end is important— that generally indicates that there are (or could be) SIMD-optimized versions. I know this codebase has plenty of assembly. All of the x86 ASM files appear to be written such that they could be compiled with NASM.

    Leftovers
    One interesting item in the code was vpx_scale/leapster. Is this in reference to the Leapster handheld educational gaming unit ? Based on this item from 2005 (archive.org copy), some Leapster titles probably used VP6. This reminds me of finding references to the PlayStation in Duck/On2’s original VpVision source release. I don’t know of any PlayStation games that used Duck’s original codecs but with thousands to choose from, it’s possible that we may find a few some day.