
Recherche avancée
Médias (10)
-
Demon Seed
26 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
Demon seed (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
-
The four of us are dying (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
-
Corona radiata (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
-
Lights in the sky (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
-
Head down (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
Autres articles (47)
-
Des sites réalisés avec MediaSPIP
2 mai 2011, parCette page présente quelques-uns des sites fonctionnant sous MediaSPIP.
Vous pouvez bien entendu ajouter le votre grâce au formulaire en bas de page. -
Support audio et vidéo HTML5
10 avril 2011MediaSPIP utilise les balises HTML5 video et audio pour la lecture de documents multimedia en profitant des dernières innovations du W3C supportées par les navigateurs modernes.
Pour les navigateurs plus anciens, le lecteur flash Flowplayer est utilisé.
Le lecteur HTML5 utilisé a été spécifiquement créé pour MediaSPIP : il est complètement modifiable graphiquement pour correspondre à un thème choisi.
Ces technologies permettent de distribuer vidéo et son à la fois sur des ordinateurs conventionnels (...) -
HTML5 audio and video support
13 avril 2011, parMediaSPIP uses HTML5 video and audio tags to play multimedia files, taking advantage of the latest W3C innovations supported by modern browsers.
The MediaSPIP player used has been created specifically for MediaSPIP and can be easily adapted to fit in with a specific theme.
For older browsers the Flowplayer flash fallback is used.
MediaSPIP allows for media playback on major mobile platforms with the above (...)
Sur d’autres sites (3009)
-
What is Behavioural Segmentation and Why is it Important ?
28 septembre 2023, par Erin — Analytics Tips -
ffmpeg is failing to load shared libraries after a ./configure with a prefix inside a conda environment
30 janvier 2024, par user3133806I am using
conda
and building ffmpeg from source within that environment.

I ran the following commands :


conda create --name my_conda_env
conda activate my_conda_env
# Now I am in the conda environment
# $CONDA_PREFIX is /home/myuser/.conda/envs/my_conda_env/bin/ffmpeg

# Checkout ffmpeg code
# git checkout ...

./configure --prefix=$CONDA_PREFIX --enable-shared --disable-static && make distclean && make -j 100 && make install

# The above command does install the newly built ffmpeg into:
# /home/myuser/.conda/envs/my_conda_env/bin/ffmpeg

# However it fails to execute:
ffmpeg
ffmpeg: error while loading shared libraries: libavdevice.so.58: cannot open shared object file: No such file or directory

# When I add the conda lib path to LD_LIBRARY_PATH it works:
LD_LIBRARY_PATH=$CONDA_PREFIX/lib:$LD_LIBRARY_PATH ffmpeg
ffmpeg version n4.2.9-4-gd7beb0c61f Copyright (c) 2000-2023 the FFmpeg developers

# I thought ./configure with a --prefix will build a binary that will search for libraries relative to itself, but that does not appear to be the case:

strace -o /tmp/strace.out ffmpeg
tail /tmp/strace.out

openat(AT_FDCWD, "/usr/lib64/haswell/x86_64/libavdevice.so.58", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
newfstatat(AT_FDCWD, "/usr/lib64/haswell/x86_64", 0x7fff65f56d90, 0) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/usr/lib64/haswell/libavdevice.so.58", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
newfstatat(AT_FDCWD, "/usr/lib64/haswell", 0x7fff65f56d90, 0) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/usr/lib64/avx512_1/x86_64/libavdevice.so.58", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
newfstatat(AT_FDCWD, "/usr/lib64/avx512_1/x86_64", 0x7fff65f56d90, 0) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/usr/lib64/avx512_1/libavdevice.so.58", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
newfstatat(AT_FDCWD, "/usr/lib64/avx512_1", 0x7fff65f56d90, 0) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/usr/lib64/x86_64/libavdevice.so.58", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
newfstatat(AT_FDCWD, "/usr/lib64/x86_64", 0x7fff65f56d90, 0) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/usr/lib64/libavdevice.so.58", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
newfstatat(AT_FDCWD, "/usr/lib64", {st_mode=S_IFDIR|0555, st_size=49526, ...}, 0) = 0
writev(2, [{iov_base="ffmpeg", iov_len=6}, {iov_base=": ", iov_len=2}, {iov_base="error while loading shared libra"..., iov_len=36}, {i
ov_base=": ", iov_len=2}, {iov_base="libavdevice.so.58", iov_len=17}, {iov_base=": ", iov_len=2}, {iov_base="cannot open shared object file", iov_len=30}, {iov_base=": ", iov_len=2}, {iov_base="No such file or directory", iov_len=25}, {iov_base="\n", iov_len=1}], 10) = 
123



Conda documentation says not to use LD_LIBRARY_PATH here :




How can I build ffmpeg from source in a conda environment and have the binary find the .so file relative to itself ?


-
Ffmpeg HLS conversion error on AWS Lambda - ffmpeg was killed with signal SIGSEGV
20 octobre 2023, par RtiM0I'm trying to convert video files into HLS streams on a AWS Lambda. The ffmpeg configuration I have setup works for normal (Non HLS) transcoding, but in case of HLS it throws the following error :


stderr:
frame= 341 fps= 84 q=34.0 q=32.0 q=28.0 size=N/A time=00:00:12.52 bitrate=N/A speed= 3.1x 
frame= 385 fps= 85 q=34.0 q=31.0 q=27.0 size=N/A time=00:00:13.97 bitrate=N/A speed=3.08x 
frame= 433 fps= 86 q=33.0 q=30.0 q=27.0 size=N/A time=00:00:15.55 bitrate=N/A speed=3.08x 
[hls @ 0x702c480] Cannot use rename on non file protocol, this may lead to races and temporary partial files
[hls @ 0x702c480] Opening '/tmp/stream_0.m3u8' for writing
[hls @ 0x702c480] Opening '/tmp/stream_1.m3u8' for writing
[hls @ 0x702c480] Opening '/tmp/stream_2.m3u8' for writing
[hls @ 0x702c480] Opening '/tmp/master.m3u8' for writing
ffmpeg was killed with signal SIGSEGV



And I error thrown by fluent-ffmpeg is this :


2023-03-06T10:21:44.555Z 15a0a43b-5e24-42ac-ae72-fe04f0c72a3e ERROR Invoke Error 
{
 "errorType": "Error",
 "errorMessage": "ffmpeg was killed with signal SIGSEGV",
 "stack": [
 "Error: ffmpeg was killed with signal SIGSEGV",
 " at ChildProcess.<anonymous> (/var/task/node_modules/fluent-ffmpeg/lib/processor.js:180:22)",
 " at ChildProcess.emit (node:events:513:28)",
 " at ChildProcess._handle.onexit (node:internal/child_process:291:12)"
 ]
}
</anonymous>


This is the code I run on AWS Lambda to convert video files into HLS :


export const compressToHLS = (sourcePath, outputFolder) =>
 new Promise((resolve, reject) => {
 Ffmpeg(sourcePath)
 .complexFilter([
 {
 filter: "split",
 options: "3",
 inputs: "v:0",
 outputs: ["v1", "v2", "v3"],
 },
 {
 filter: "scale",
 options: {
 w: 1280,
 h: 720,
 },
 inputs: "v1",
 outputs: "v1out",
 },
 {
 filter: "scale",
 options: {
 w: 960,
 h: 540,
 },
 inputs: "v2",
 outputs: "v2out",
 },
 {
 filter: "scale",
 options: {
 w: 640,
 h: 360,
 },
 inputs: "v3",
 outputs: "v3out",
 },
 ])
 .outputOptions([
 "-map [v1out]",
 "-c:v:0",
 "libx264",
 "-b:v 3000000",
 "-map [v2out]",
 "-c:v:1",
 "libx264",
 "-b:v 2000000",
 "-map [v3out]",
 "-c:v:2",
 "libx264",
 "-b:v 1000000",
 ])
 .outputOptions([
 "-map a:0",
 "-c:a:0 aac",
 "-b:a:0 96000",
 "-ar 48000",
 "-ac 2",
 "-map a:0",
 "-c:a:1 aac",
 "-b:a:1 96000",
 "-ar 48000",
 "-ac 2",
 "-map a:0",
 "-c:a:2 aac",
 "-b:a:2 96000",
 "-ar 48000",
 "-ac 2",
 ])
 .outputOptions([
 "-f hls",
 "-hls_time 10",
 "-hls_playlist_type vod",
 "-hls_flags independent_segments",
 "-hls_segment_type mpegts",
 `-hls_segment_filename ${outputFolder}/%v_%d.ts`,
 "-master_pl_name master.m3u8",
 ])
 .outputOption("-var_stream_map", "v:0,a:0 v:1,a:1 v:2,a:2")
 .outputOption("-preset veryfast")
 .output(`${outputFolder}/stream_%v.m3u8`)
 .on("start", (cmdline) => console.log(cmdline))
 .on("progress", (progress) => {
 let prog = Math.floor(progress.percent * 10) / 10;
 if (Math.round(prog) % 10 == 0) {
 console.log(`${prog}% complete`);
 }
 })
 .on("error", (err, stdout, stderr) => {
 if (err) {
 console.log(err.message);
 console.log("stdout:\n" + stdout);
 console.log("stderr:\n" + stderr);
 reject(err);
 }
 })
 .on("end", () => resolve())
 .run();
 });



In this code the sourcePath is usually a presigned URL from S3 (But I have also tried to download a file on /tmp and setting sourcePath as the path to the downloaded file) and outputFolder is
tmpdir()
which is/tmp
.

I have the lambda settings configured to have 10GB of memory and 10GB of ephemeral storage (the maximum allowed).