
Recherche avancée
Autres articles (51)
-
La file d’attente de SPIPmotion
28 novembre 2010, parUne file d’attente stockée dans la base de donnée
Lors de son installation, SPIPmotion crée une nouvelle table dans la base de donnée intitulée spip_spipmotion_attentes.
Cette nouvelle table est constituée des champs suivants : id_spipmotion_attente, l’identifiant numérique unique de la tâche à traiter ; id_document, l’identifiant numérique du document original à encoder ; id_objet l’identifiant unique de l’objet auquel le document encodé devra être attaché automatiquement ; objet, le type d’objet auquel (...) -
Websites made with MediaSPIP
2 mai 2011, parThis page lists some websites based on MediaSPIP.
-
Personnaliser en ajoutant son logo, sa bannière ou son image de fond
5 septembre 2013, parCertains thèmes prennent en compte trois éléments de personnalisation : l’ajout d’un logo ; l’ajout d’une bannière l’ajout d’une image de fond ;
Sur d’autres sites (5191)
-
Unable to open audio file on Heroku using Librosa
15 mars 2020, par Rohan BojjaI have a feature extraction REST API written in Python using the Librosa library (Extracting audio features), it receives an audio file through HTTP POST and responds with a list of features(such as MFCC,etc).
Since librosa depends on SoundFile (libsndfile1 / libsndfile-dev), it doesn’t support all the formats, I’m converting the audio file using ffmpeg-python wrapper (https://kkroening.github.io/ffmpeg-python/) .
It works just fine on my Windows 10 machine with Conda, but when I deploy it on Heroku, the librosa.load() functions returns an unknown format error, no matter what format I convert it to. I have tried FLAC, AIFF and WAV.
My first guess is that the converted format isn’t supported by libsndfile1, but it works on my local server (plus, their documentation says AIFF and WAV are supported), so I’m a little lost.
I have attached all the relevant snippets of code below, I can provide anything extra if necessary. Any help is highly appreciated. Thanks.
UPDATE1 :
I am using pipes instead of writing and reading from disk, worth a mention as the question could be misleading otherwise.
The log :
File "/app/app.py", line 31, in upload
x , sr = librosa.load(audioFile,mono=True,duration=5)
File "/app/.heroku/python/lib/python3.6/site-packages/librosa/core/audio.py", line 164, in load
six.reraise(*sys.exc_info())
File "/app/.heroku/python/lib/python3.6/site-packages/six.py", line 703, in reraise
raise value
File "/app/.heroku/python/lib/python3.6/site-packages/librosa/core/audio.py", line 129, in load
with sf.SoundFile(path) as sf_desc:
File "/app/.heroku/python/lib/python3.6/site-packages/soundfile.py", line 629, in __init__
self._file = self._open(file, mode_int, closefd)
File "/app/.heroku/python/lib/python3.6/site-packages/soundfile.py", line 1184, in _open
"Error opening {0!r}: ".format(self.name))
File "/app/.heroku/python/lib/python3.6/site-packages/soundfile.py", line 1357, in _error_check
raise RuntimeError(prefix + _ffi.string(err_str).decode('utf-8', 'replace'))
RuntimeError: Error opening <_io.BytesIO object at 0x7f46ad28beb8>: File contains data in an unknown format.
10.69.244.94 - - [15/Mar/2020:12:37:28 +0000] "POST /receiveWav HTTP/1.1" 500 290 "-" "curl/7.55.1"Flask/Librosa code deployed on Heroku (app.py) :
from flask import Flask, jsonify, request
import scipy.optimize
import os,pickle
import numpy as np
from sklearn.preprocessing import StandardScaler
import librosa
import logging
import soundfile as sf
from pydub import AudioSegment
import subprocess as sp
import ffmpeg
from io import BytesIO
logging.basicConfig(level=logging.DEBUG)
app = Flask(__name__)
@app.route('/receiveWav',methods = ['POST'])
def upload():
if(request.method == 'POST'):
f = request.files['file']
app.logger.info(f'AUDIO FORMAT\n\n\n\n\n\n\n\n\n\n: {f}')
proc = (
ffmpeg.input('pipe:')
.output('pipe:', format='aiff')
.run_async(pipe_stdin=True,pipe_stdout=True, pipe_stderr=True)
)
audioFile,err = proc.communicate(input=f.read())
audioFile = BytesIO(audioFile)
scaler = pickle.load(open("scaler.ok","rb"))
x , sr = librosa.load(audioFile,mono=True,duration=5)
y=x
#Extract the features
chroma_stft = librosa.feature.chroma_stft(y=y, sr=sr)
spec_cent = librosa.feature.spectral_centroid(y=y, sr=sr)
spec_bw = librosa.feature.spectral_bandwidth(y=y, sr=sr)
rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr)
zcr = librosa.feature.zero_crossing_rate(y)
rmse = librosa.feature.rms(y=y)
mfcc = librosa.feature.mfcc(y=y, sr=sr)
features = f'{np.mean(chroma_stft)} {np.mean(rmse)} {np.mean(spec_cent)} {np.mean(spec_bw)} {np.mean(rolloff)} {np.mean(zcr)}'
for e in mfcc:
features += f' {np.mean(e)}'
input_data2 = np.array([float(i) for i in features.split(" ")]).reshape(1,-1)
input_data2 = scaler.transform(input_data2)
return jsonify(input_data2.tolist())
# driver function
if __name__ == '__main__':
app.run(debug = True)Aptfile :
libsndfile1
libsndfile-dev
libav-tools
libavcodec-extra-53
libavcodec-extra-53
ffmpegrequirements.txt :
aniso8601==8.0.0
audioread==2.1.8
certifi==2019.11.28
cffi==1.14.0
Click==7.0
decorator==4.4.2
ffmpeg-python==0.2.0
Flask==1.1.1
Flask-RESTful==0.3.8
future==0.18.2
gunicorn==20.0.4
itsdangerous==1.1.0
Jinja2==2.11.1
joblib==0.14.1
librosa==0.7.2
llvmlite==0.31.0
MarkupSafe==1.1.1
marshmallow==3.2.2
numba==0.48.0
numpy==1.18.1
pycparser==2.20
pydub==0.23.1
pytz==2019.3
resampy==0.2.2
scikit-learn==0.22.2.post1
scipy==1.4.1
six==1.14.0
SoundFile==0.10.3.post1
Werkzeug==1.0.0
wincertstore==0.2 -
Clarification on using FFmpeg in an open source app with —enable-gpl and —enable-nonfree [closed]
24 avril 2020, par Alex HoffmanCan someone please clarify the legality of bundling and using the full version of FFmpeg (with included
libx264
andlibx265
and othergpl
codecs) in an open source app.


I don't want to modify anything, all I want to do is to bundle compiled FFmpeg binaries downloaded from their website with my open source app which would use them for media files editing.



I want to bundle the full version of FFmpeg since without
--enable-gpl
and--enable-nonfree
, not being able to process h264, FFmpeg becomes effectivelly useless. So I want to know if I have to bundle the binaries compiled without--enable-gpl
and--enable-nonfree
or can I bundle the full version withshared linking
(libs separated from the executable) ?

-
ffmpeg avformat_open_input() failed to open a dshow device url containing Chinese Characters
16 octobre 2024, par SangThe USB Webcam is OK, but the device I want to use is a "virtual camera" named "无他伴侣(竖屏)", whose video is from the smart phone like Android or iOS. Connect the phone to PC, run an app on the phone, then run a PC client application, which can preview the video. The phone app is called "无他相机", and the PC app is called "无他伴侣", its website is https://www.wuta-cam.com/.


I run FFmpeg at the Windows Commandline with the command
ffmpeg -list_devices true -f dshow -i dummy
, it's OK to list the devices.(in order to display Chinese correctly, runchcp 65001
in advance.)

Run the command
ffplay -f dshow -i video="无他伴侣(竖屏)"
, it's OK to play the video.(of course you need to comfirm its PC client previewing fine in advance.)

Now I want to get the decoded frames from that virtual camera in my program, I call
avformat_open_input()
withvideo=无他伴侣(竖屏)
, it failed, the return value is -5, I/O error.

Anyone knows the reason ?


Below is my code snippet.


avdevice_register_all();
avcodec_register_all();
//const char * url= "video=Logitech Webcam C930e";// This is fine.
char url[] = "video=无他伴侣(竖屏)";// This is bad.

AVFormatContext *pFmtCtx = avformat_alloc_context();
AVInputFormat *iformat = av_find_input_format("dshow");
int nRet = 0;
nRet = avformat_open_input(&pFmtCtx, url, iformat, NULL);
if (nRet)
{
 const size_t buffer_size = 256;
 char err_description[buffer_size];
 av_strerror(nRet, err_description, buffer_size);
 printf("%s.\n", err_description);// --> I/O error.
 printf("FAILED to open input.(Line:%d,%d)\n", __LINE__, nRet);
 return -1;
}