Recherche avancée

Médias (1)

Mot : - Tags -/censure

Autres articles (41)

  • Taille des images et des logos définissables

    9 février 2011, par

    Dans beaucoup d’endroits du site, logos et images sont redimensionnées pour correspondre aux emplacements définis par les thèmes. L’ensemble des ces tailles pouvant changer d’un thème à un autre peuvent être définies directement dans le thème et éviter ainsi à l’utilisateur de devoir les configurer manuellement après avoir changé l’apparence de son site.
    Ces tailles d’images sont également disponibles dans la configuration spécifique de MediaSPIP Core. La taille maximale du logo du site en pixels, on permet (...)

  • Mediabox : ouvrir les images dans l’espace maximal pour l’utilisateur

    8 février 2011, par

    La visualisation des images est restreinte par la largeur accordée par le design du site (dépendant du thème utilisé). Elles sont donc visibles sous un format réduit. Afin de profiter de l’ensemble de la place disponible sur l’écran de l’utilisateur, il est possible d’ajouter une fonctionnalité d’affichage de l’image dans une boite multimedia apparaissant au dessus du reste du contenu.
    Pour ce faire il est nécessaire d’installer le plugin "Mediabox".
    Configuration de la boite multimédia
    Dès (...)

  • Ajouter notes et légendes aux images

    7 février 2011, par

    Pour pouvoir ajouter notes et légendes aux images, la première étape est d’installer le plugin "Légendes".
    Une fois le plugin activé, vous pouvez le configurer dans l’espace de configuration afin de modifier les droits de création / modification et de suppression des notes. Par défaut seuls les administrateurs du site peuvent ajouter des notes aux images.
    Modification lors de l’ajout d’un média
    Lors de l’ajout d’un média de type "image" un nouveau bouton apparait au dessus de la prévisualisation (...)

Sur d’autres sites (3477)

  • Revision d7eea782f2 : Extend number of reference buffers to 8. The number of reference buffers is ext

    3 mai 2013, par Adrian Grange

    Changed Paths :
     Modify /vp9/common/vp9_entropymode.c


     Modify /vp9/common/vp9_onyxc_int.h


     Modify /vp9/decoder/vp9_decodframe.c


     Modify /vp9/encoder/vp9_bitstream.c



    Extend number of reference buffers to 8.

    The number of reference buffers is extended to 8 and
    a reference sign-bias added for the LAST_FRAME.

    Whilst the number of reference buffers used by an
    individual frame remains unchanged at 3, these may
    now be selected from 8 possible buffers.

    Change-Id : I2d247b9c1c2b3a339d6c9fac125e81ba373f75a7

  • Further Dreamcast Hacking

    3 février 2011, par Multimedia Mike — Sega Dreamcast

    I’m still haunted by Sega Dreamcast programming, specifically the fact that I used to be able to execute custom programs on the thing (roughly 8-10 years ago) and now I cannot. I’m going to compose a post to describe my current adventures on this front. There are 3 approaches I have been using : Raw, Kallistios, and the almighty Linux.


    Raw
    What I refer to as "raw" is an assortment of programs that lived in a small number of source files (sometimes just one ASM file) and could be compiled with the most basic SH-4 toolchain. The advantage here is that there aren’t many moving parts and not many things that can possibly go wrong, so it provides a good functional baseline.

    One of the original Dreamcast hackers was Marcus Comstedt, who still has his original DC material hosted at the reasonably easy-to-remember URL mc.pp.se/dc. I can get some of these simple demos to work, but not others.

    I also successfully assembled and ran a pair of 256-byte (!!) demos from this old DC scene page.

    KallistiOS
    KallistiOS (or just KOS) was a real-time OS developed for the DC and was popular among the DC homebrew community. All the programming I did back in the day was based around KOS. Now I can’t get any of it to work. More specifically, KOS can’t seem to make it past a certain point in its system initialization.

    The Linux Option
    I was never that excited about running Linux on my Dreamcast. For some hackers, running Linux on a given piece of consumer electronics is the highest attainable goal. Back in the day, I looked at it from a much more pragmatic perspective— I didn’t see much use in running Linux on the DC, not as much as running KOS which was developed to be a much more appropriate fit.

    However, I was able to burn a CD-R of an old binary image of Linux 2.4.5 compiled for the Dreamcast and boot it some months ago. So I at least have a feeling that this should work. I have never cross-compiled a kernel of my own (though I have compiled many, many x86 kernels in my time, so I’m not a total n00b in this regard). I figured this might be a good time to start.

    The first item that worries me is getting a functional cross-compiling toolchain. Fortunately, a little digging in the Linux kernel documentation pointed me in the direction of a bunch of ready-made toolchains hosted at kernel.org. So I grabbed one of the SH toolchains (gcc-4.3.3-nolibc) and got rolling.

    I’m well familiar with the cycle of 'make menuconfig' in order to pick configuration options, and then 'make' to build a kernel (or usually 'make zImage' or 'make bzImage' to create compressed images). For cross compiling, the primary difference seems to be editing the root Makefile in the Linux source code tree (I’m using 2.6.37, the latest stable as of this writing) and setting a value for the CROSS_COMPILE variable. Then, run 'make menuconfig' followed by 'make' as normal.

    The Linux 2.6 series is supposed to support a range of Renesas (formerly Hitachi) SH processors and board configurations. This includes reasonable defaults for the Sega Dreamcast hardware. I got it all compiling except for a series of .S files. Linus Torvalds once helped me debug a program I work on so I thought I’d see if there was something I could help debug here.

    The first issue was with ASM statements of a form similar to :

    mov #0xffffffe0, r1
    

    Now, the DC’s SH-4 is a RISC CPU. A lot of RISC architectures adopt a fixed instruction size of 32 bits. You can’t encode an entire 32-bit immediate value inside of a 32-bit instruction (there would be no room for the instruction encoding). Further, the SH series encoded instructions with a mere 16 bits. The move immediate data instruction only allows for an 8-bit, sign-extended value.

    I decided that the above statement is equivalent to :

    mov #-32, r1
    

    I’ll give this statement the benefit of the doubt that it used to work with the gcc toolchain somewhere along the line. I assume that the assembler is supposed to know enough to substitute the first form with the second.

    The next problem is that an ’sti’ instruction shows up in a number of spots. Using Intel x86 conventions, this is a "set interrupt flag" instruction (I remember that the 6502 CPU had the same instruction mnemonic, though its interrupt flag’s operation was opposite that of the x86). The SH-4 reference manual lists no ’sti’ instruction. When it gets to these lines, the assembler complains about immediate move instructions with too large data, like the instructions above. I’m guessing they must be macro’d to something else but I failed to find where. I commented out those lines for the time being. Probably not that smart, but I want to keep this moving for now.

    So I got the code to compile into a kernel file called ’vmlinux’. I’ve seen this file many times before but never thought about how to get it to run directly. The process has usually been to compress it and send it over to lilo or grub for loading, as that is the job of the bootloader. I have never even wondered what format the vmlinux file takes until now. It seems that ’vmlinux’ is just a plain old ELF file :

    $ file vmlinux
    vmlinux : ELF 32-bit LSB executable, Renesas SH,
    version 1 (SYSV), statically linked, not stripped
    

    The ’dc-tool’ program that uploads executables to the waiting bootloader on the Dreamcast is perfectly cool accepting ELF files (and S-record files, and raw binary files). After a very lengthy upload process, execution fails (resets the system).

    For the sake of comparison, I dusted off that Linux 2.4.5 bootable Dreamcast CD-ROM and directly uploaded the vmlinux file from that disc. That works just fine (until it’s time to go to the next loading phase, i.e., finding a filesystem). Possible issues here could include the commented ’sti’ instructions (could be that they aren’t just decoration). I’m also trying to understand the memory organization— perhaps the bootloader wants the ELF to be based at a different address. Or maybe the kernel and the bootloader don’t like each other in the first place— in this case, I need to study the bootable Linux CD-ROM to see how it’s done.

    Optimism
    Even though I’m meeting with rather marginal success, this is tremendously educational. I greatly enjoy these exercises if only for the deeper understanding they bring for the lowest-level system details.

  • Why does use of H264 in sender/receiver pipelines introduce just HUGE delay ?

    24 janvier 2012, par Serguey Zefirov

    When I try to create pipeline that uses H264 to transmit video, I get some enormous delay, up to 10 seconds to transmit video from my machine to... my machine ! This is unacceptable for my goals and I'd like to consult StackOverflow over what I (or someone else) do wrong.

    I took pipelines from gstrtpbin documentation page and slightly modified them to use Speex :

    This is sender pipeline :
    # !/bin/sh

    gst-launch -v gstrtpbin name=rtpbin \
           v4l2src ! ffmpegcolorspace ! ffenc_h263 ! rtph263ppay ! rtpbin.send_rtp_sink_0 \
                     rtpbin.send_rtp_src_0 ! udpsink host=127.0.0.1 port=5000                            \
                     rtpbin.send_rtcp_src_0 ! udpsink host=127.0.0.1 port=5001 sync=false async=false    \
                     udpsrc port=5005 ! rtpbin.recv_rtcp_sink_0                           \
           pulsesrc ! audioconvert ! audioresample  ! audio/x-raw-int,rate=16000 !    \
                     speexenc bitrate=16000 ! rtpspeexpay ! rtpbin.send_rtp_sink_1                   \
                     rtpbin.send_rtp_src_1 ! udpsink host=127.0.0.1 port=5002                            \
                     rtpbin.send_rtcp_src_1 ! udpsink host=127.0.0.1 port=5003 sync=false async=false    \
                     udpsrc port=5007 ! rtpbin.recv_rtcp_sink_1

    Receiver pipeline :

     !/bin/sh

    gst-launch -v\
       gstrtpbin name=rtpbin                                          \
       udpsrc caps="application/x-rtp,media=(string)video, clock-rate=(int)90000, encoding-name=(string)H263-1998" \
               port=5000 ! rtpbin.recv_rtp_sink_0                                \
           rtpbin. ! rtph263pdepay ! ffdec_h263 ! xvimagesink                    \
        udpsrc port=5001 ! rtpbin.recv_rtcp_sink_0                               \
        rtpbin.send_rtcp_src_0 ! udpsink port=5005 sync=false async=false        \
       udpsrc caps="application/x-rtp,media=(string)audio, clock-rate=(int)16000, encoding-name=(string)SPEEX, encoding-params=(string)1, payload=(int)110" \
               port=5002 ! rtpbin.recv_rtp_sink_1                                \
           rtpbin. ! rtpspeexdepay ! speexdec ! audioresample ! audioconvert ! alsasink \
        udpsrc port=5003 ! rtpbin.recv_rtcp_sink_1                               \
        rtpbin.send_rtcp_src_1 ! udpsink host=127.0.0.1 port=5007 sync=false async=false

    Those pipelines, a combination of H263 and Speex, work fine enough. I snap my fingers near camera and micropohne and then I see movement and hear sound at the same time.

    Then I changed pipelines to use H264 along the video path.

    The sender becomes :
    # !/bin/sh

    gst-launch -v gstrtpbin name=rtpbin \
           v4l2src ! ffmpegcolorspace ! x264enc bitrate=300 ! rtph264pay ! rtpbin.send_rtp_sink_0 \
                     rtpbin.send_rtp_src_0 ! udpsink host=127.0.0.1 port=5000                            \
                     rtpbin.send_rtcp_src_0 ! udpsink host=127.0.0.1 port=5001 sync=false async=false    \
                     udpsrc port=5005 ! rtpbin.recv_rtcp_sink_0                           \
           pulsesrc ! audioconvert ! audioresample  ! audio/x-raw-int,rate=16000 !    \
                     speexenc bitrate=16000 ! rtpspeexpay ! rtpbin.send_rtp_sink_1                   \
                     rtpbin.send_rtp_src_1 ! udpsink host=127.0.0.1 port=5002                            \
                     rtpbin.send_rtcp_src_1 ! udpsink host=127.0.0.1 port=5003 sync=false async=false    \
                     udpsrc port=5007 ! rtpbin.recv_rtcp_sink_1

    And receiver becomes :
    # !/bin/sh

    gst-launch -v\
       gstrtpbin name=rtpbin                                          \
       udpsrc caps="application/x-rtp,media=(string)video, clock-rate=(int)90000, encoding-name=(string)H264" \
               port=5000 ! rtpbin.recv_rtp_sink_0                                \
           rtpbin. ! rtph264depay ! ffdec_h264 ! xvimagesink                    \
        udpsrc port=5001 ! rtpbin.recv_rtcp_sink_0                               \
        rtpbin.send_rtcp_src_0 ! udpsink port=5005 sync=false async=false        \
       udpsrc caps="application/x-rtp,media=(string)audio, clock-rate=(int)16000, encoding-name=(string)SPEEX, encoding-params=(string)1, payload=(int)110" \
               port=5002 ! rtpbin.recv_rtp_sink_1                                \
           rtpbin. ! rtpspeexdepay ! speexdec ! audioresample ! audioconvert ! alsasink \
        udpsrc port=5003 ! rtpbin.recv_rtcp_sink_1                               \
        rtpbin.send_rtcp_src_1 ! udpsink host=127.0.0.1 port=5007 sync=false async=false

    This is what happen under Ubuntu 10.04. I didn't noticed such huge delays on Ubuntu 9.04 - the delays there was in range 2-3 seconds, AFAIR.