Recherche avancée

Médias (1)

Mot : - Tags -/book

Autres articles (111)

  • Personnaliser les catégories

    21 juin 2013, par

    Formulaire de création d’une catégorie
    Pour ceux qui connaissent bien SPIP, une catégorie peut être assimilée à une rubrique.
    Dans le cas d’un document de type catégorie, les champs proposés par défaut sont : Texte
    On peut modifier ce formulaire dans la partie :
    Administration > Configuration des masques de formulaire.
    Dans le cas d’un document de type média, les champs non affichés par défaut sont : Descriptif rapide
    Par ailleurs, c’est dans cette partie configuration qu’on peut indiquer le (...)

  • Publier sur MédiaSpip

    13 juin 2013

    Puis-je poster des contenus à partir d’une tablette Ipad ?
    Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir

  • HTML5 audio and video support

    13 avril 2011, par

    MediaSPIP uses HTML5 video and audio tags to play multimedia files, taking advantage of the latest W3C innovations supported by modern browsers.
    The MediaSPIP player used has been created specifically for MediaSPIP and can be easily adapted to fit in with a specific theme.
    For older browsers the Flowplayer flash fallback is used.
    MediaSPIP allows for media playback on major mobile platforms with the above (...)

Sur d’autres sites (11347)

  • Find frames in the video that are similar to the static image, to crop the video

    13 septembre 2024, par Nguyen Van Kufu

    I use opencv with ffmpeg to cut the video. Specifically, find the frame in the video that is the same as the picture, then cut the video at the time the video frame is the same as the picture.

    


    I found the code on google and edited it according to my needs, but when it comes to comparing frames and still images, I don't know how to ask you to add a comparison section to cut the video.

    


    import numpy as np
import cv2
import time
from skimage.metrics import structural_similarity as compare_ssim

hinh = cv2.imread("f:\\x.png")
hinh1 = cv2.resize(hinh, (500, 300))
cap = cv2.VideoCapture('f:\\tt.mp4')
prev_frame_time = 0
new_frame_time = 0
cv2.imshow('hinh', hinh1)

while(cap.isOpened()):
    ret, frame = cap.read()

    if not ret:
        break

    gray = frame

    gray = cv2.resize(gray, (500, 300))
    font = cv2.FONT_HERSHEY_SIMPLEX
    new_frame_time = time.time()

    fps = 1/(new_frame_time-prev_frame_time)
    prev_frame_time = new_frame_time

    fps = int(fps)

    fps = str(fps)

    cv2.putText(gray, fps, (7, 70), font, 3, (100, 255, 0), 3, cv2.LINE_AA)
    ##############

    # displaying the frame with fps

    cv2.imshow('frame', gray)

    # press 'Q' if you want to exit
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()


    


  • Sinch Video calling not working with ffmpeg video cropping

    29 mars 2016, par Mubina Shaikh

    My project having ffmpeg video cropping libs,I have added the sinch files under src/main/jniLibs,what happen is project runs successfully but when initiate the video call of sinch blank white color screen appears.Also try to add this code in .mk files of video cropping libs as there is no .mk file is there for sinch,but it still not working.

    The code added in .mk files to load the sinch lib module.

    include $(CLEAR_VARS)

    LOCAL_MODULE := libsinch-android-rtc

    LOCAL_STATIC_LIBRARIES := sinch-android-rtc-3.9.3

    LOCAL_LDLIBS := -llog

    include $(BUILD_SHARED_LIBRARY)
  • tfds.features.Video Usage for video decoding in tensorflow 2

    20 mai 2020, par Sandeep

    I am trying to decode a video in tensorflow 2 using tfds.features.Video , so that the output is a "tf.Tensor of type tf.uint8 and shape [num_frames, height, width, channels]" using following code :

    



    import numpy as np
import pandas as pd
import tensorflow as tf
import tensorflow_datasets as tfds
df_trains= pd.DataFrame()
df_trains['video_files']= ['aa.mp4']

files_ds = tf.data.Dataset.from_tensor_slices(df_trains.video_files)

video_class = tfds.features.Video(shape=(None, 1080, 1920,3), encoding_format='png', ffmpeg_extra_args=())

a= video_class.decode_example(files_ds)


    



    However it generates following error : 
"AssertionError: Feature Video can only be decoded when defined as top-level feature, through info.features.decode_example()"

    



    I am unable to solve it, please help in this regard.