
Recherche avancée
Médias (1)
-
Bug de détection d’ogg
22 mars 2013, par
Mis à jour : Avril 2013
Langue : français
Type : Video
Autres articles (85)
-
MediaSPIP 0.1 Beta version
25 avril 2011, parMediaSPIP 0.1 beta is the first version of MediaSPIP proclaimed as "usable".
The zip file provided here only contains the sources of MediaSPIP in its standalone version.
To get a working installation, you must manually install all-software dependencies on the server.
If you want to use this archive for an installation in "farm mode", you will also need to proceed to other manual (...) -
MediaSPIP version 0.1 Beta
16 avril 2011, parMediaSPIP 0.1 beta est la première version de MediaSPIP décrétée comme "utilisable".
Le fichier zip ici présent contient uniquement les sources de MediaSPIP en version standalone.
Pour avoir une installation fonctionnelle, il est nécessaire d’installer manuellement l’ensemble des dépendances logicielles sur le serveur.
Si vous souhaitez utiliser cette archive pour une installation en mode ferme, il vous faudra également procéder à d’autres modifications (...) -
Le profil des utilisateurs
12 avril 2011, parChaque utilisateur dispose d’une page de profil lui permettant de modifier ses informations personnelle. Dans le menu de haut de page par défaut, un élément de menu est automatiquement créé à l’initialisation de MediaSPIP, visible uniquement si le visiteur est identifié sur le site.
L’utilisateur a accès à la modification de profil depuis sa page auteur, un lien dans la navigation "Modifier votre profil" est (...)
Sur d’autres sites (8009)
-
ffmpeg output seeking not accurate even after -i [closed]
3 septembre 2023, par hl037_In the documentation of ffmpeg, it is stated that if
-ss
is passed after-i
, then it is frame accurate (Other questions are for-ss
before-i
).

Here is my command :


ffmpeg -i vid.mkv -ss 53 -codec copy test.mkv -y 



However, it is still not accurate, and seems to jump to the nearest keyframe. Am i missing something ?


Note : the problem only occurs when the video steam is copied. If reencoded or discarded, it works as expected


Note2 (As I am doing other tries) : There are also strange things with audio :


ffmpeg -i vid.mkv -ss 53 -codec copy test1.mkv -y 
ffmpeg -i vid.mkv -ss 54 -codec copy test2.mkv -y 
ffmpeg -i test1.mkv -vn -c:a copy test1a.mkv -y
ffmpeg -i test2.mkv -vn -c:a copy test2a.mkv -y



- 

- test1.mkv is reported to be the right lenght, but the first frame correspond to the frame at 0:50 in original (end is good)
- test2.mkv is reported to be the right lenght, but the first frame correspond to the frame at 0:55 in original (end is good)
- test1a.mkv is the expected audio (starts at 0:53 of the original)
- test2a.mkv is the expected audio (starts at 0:54 of the original)










-
Tour of Part of the VP8 Process
18 novembre 2010, par Multimedia Mike — VP8My toy VP8 encoder outputs a lot of textual data to illustrate exactly what it’s doing. For those who may not be exactly clear on how this or related algorithms operate, this may prove illuminating.
Let’s look at subblock 0 of macroblock 0 of a luma plane :
subblock 0 (original) 92 91 89 86 91 90 88 86 89 89 89 88 89 87 88 93
Since it’s in the top-left corner of the image to be encoded, the phantom samples above and to the left are implicitly 128 for the purpose of intra prediction (in the VP8 algorithm).
subblock 0 (original) 128 128 128 128 128 92 91 89 86 128 91 90 88 86 128 89 89 89 88 128 89 87 88 93
Using the 4×4 DC prediction mode means averaging the 4 top predictors and 4 left predictors. So, the predictor is 128. Subtract this from each element of the subblock :subblock 0, predictor removed -36 -37 -39 -42 -37 -38 -40 -42 -39 -39 -39 -40 -39 -41 -40 -35
Next, run the subblock through the forward transform :
subblock 0, transformed -312 7 1 0 1 12 -5 2 2 -3 3 -1 1 0 -2 1
Quantize (integer divide) each element ; the DC (first element) and AC (rest of the elements) quantizers are both 4 :
subblock 0, quantized -78 1 0 0 0 3 -1 0 0 0 0 0 0 0 0 0
The above block contains the coefficients that are actually transmitted (zigzagged and entropy-encoded) through the bitstream and decoded on the other end.
The decoding process looks something like this– after the same coefficients are decoded and rearranged, they are dequantized (multiplied) by the original quantizers :
subblock 0, dequantized -312 4 0 0 0 12 -4 0 0 0 0 0 0 0 0 0
Note that these coefficients are not exactly the same as the original, pre-quantized coefficients. This is a large part of where the “lossy” in “lossy video compression” comes from.
Next, the decoder generates a base predictor subblock. In this case, it’s all 128 (DC prediction for top-left subblock) :
subblock 0, predictor 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128
Finally, the dequantized coefficients are shoved through the inverse transform and added to the base predictor block :
subblock 0, reconstructed 91 91 89 85 90 90 89 87 89 88 89 90 88 88 89 92
Again, not exactly the same as the original block, but an incredible facsimile thereof.
Note that this decoding-after-encoding demonstration is not merely pedagogical– the encoder has to decode the subblock because the encoding of successive subblocks may depend on this subblock. The encoder can’t rely on the original representation of the subblock because the decoder won’t have that– it will have the reconstructed block.
For example, here’s the next subblock :
subblock 1 (original) 84 84 87 90 85 85 86 93 86 83 83 89 91 85 84 87
Let’s assume DC prediction once more. The 4 top predictors are still all 128 since this subblock lies along the top row. However, the 4 left predictors are the right edge of the subblock reconstructed in the previous example :
subblock 1 (original) 128 128 128 128 85 84 84 87 90 87 85 85 86 93 90 86 83 83 89 92 91 85 84 87
The DC predictor is computed as
(128 + 128 + 128 + 128 + 85 + 87 + 90 + 92 + 4) / 8 = 108
(the extra +4 is for rounding considerations). (Note that in this case, using the original subblock’s right edge would also have resulted in 108, but that’s beside the point.)Continuing through the same process as in subblock 0 :
subblock 1, predictor removed -24 -24 -21 -18 -23 -23 -22 -15 -22 -25 -25 -19 -17 -23 -24 -21
subblock 1, transformed
-173 -9 14 -1
2 -11 -4 0
1 6 -2 3
-5 1 0 1subblock 1, quantized
-43 -2 3 0
0 -2 -1 0
0 1 0 0
-1 0 0 0subblock 1, dequantized
-172 -8 12 0
0 -8 -4 0
0 4 0 0
-4 0 0 0subblock 1, predictor
108 108 108 108
108 108 108 108
108 108 108 108
108 108 108 108subblock 1, reconstructed
84 84 87 89
86 85 87 91
86 83 84 89
90 85 84 88I hope this concrete example (straight from a working codec) clarifies this part of the VP8 process.
-
Replace part of a video (without replacing the audio) in ffmpeg [closed]
13 février 2021, par Real NoobI have a video file that is divided into three different sections. I want to replace the middle part of this video with another clip. However, I still want to keep the audio of the original video. Can I do that in ffmpeg ?


Here are my requirements :


- 

- Original Video is 60 seconds long.
- The part I want to replace is from 25 to 45 seconds.
- I want to keep the original audio from 25 to 45 seconds and just replace the visual part with some other clip.
- The generated video will also be 60 seconds long. However, it will have the new video from 25 to 45 seconds.










Thanks.